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Executive Summary 
 
 
Video technology applications for traffic management and safety are being implemented by state 
and local government agencies in Alabama.  This technology offers both tangible and intangible 
benefits.  Video technology requires a substantial up-front investment costs for the purchase and 
installation of equipment and training of staff.  Due to the complexity of video systems and the 
rapid pace of change related to this technology, agencies may overlook some applications while 
using resources to implement less valuable applications.  This research applied and tested new, 
low cost video applications for traffic management and safety in Alabama on pilot scale projects 
to help agencies employ video technology to its fullest potential.  Several video systems, like 
digital video cameras, conventional video recorders, surveillance cameras, and Autoscope were 
implemented and tested at various locations within the state.  This research project demonstrated 
applications of low cost video technology that can be implemented to improve safety and reduce 
crashes and violations. 
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Section 1 
Introduction 

 
 
Video technology applications for traffic management and safety are being implemented by state 
and local government agencies in Alabama.  This technology offers both tangible and intangible 
benefits related to safety and management of traffic.  A comprehensive review of current and 
potential uses of video technology for traffic management and safety in Alabama was performed 
by the University Transportation Center for Alabama (UTCA).  Preliminary results from this 
research indicate several specific applications of video technology that may be implemented in 
the State of Alabama to improve traffic management and safety (McFadden and Graettinger, 
2000).  
  
Although video technology provides many benefits, it requires substantial up-front costs for 
purchasing and installing the equipment, and for training staff.  Due to the complexity of video 
systems and the rapid pace of change related to this technology, agencies may overlook some 
applications while using resources to implement less valuable applications.    
 
The goal of this research was to apply and test new video applications for traffic management 
and safety in Alabama on pilot scale projects to help agencies employ video technology to its 
fullest potential.  This research provides a review of the current capabilities of video 
applications, their implementation, and where in Alabama these systems can most improve 
traffic management and safety.   
 
This research first identified the specific areas of concern (red-light running, speeding, and 
railroad grade crossing safety) and then found specific locations in Alabama where video 
technology can be potentially employed to improve traffic management and safety.  Several 
video systems, like digital video cameras, conventional video recorders, surveillance cameras, 
and Autoscope were implemented and tested.   
 
Several organizations such as the City of Birmingham (Traffic Engineering Division), the 
Tuscaloosa Department of Transportation (TDOT), the Alabama Department of Transportation 
(ALDOT), the Alabama Department of Public Safety (DPS), and the Alabama Emergency 
Management Agency (EMA) were involved in executing the tasks associated with this project.    
 
This report is organized to reflect the research tasks accomplished during this project: 
 
Section 2.0: CARE® Analysis for Identification of Video Surveillance Locations 
Section 3.0: Compositional Traffic Counting Using Video Technology  
Section 4.0: 15th Street Corridor Modeling 
Section 5.0: Railroad-grade Crossing Automated Video Enforcement Analysis 
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Section 6.0:  Variable Message Signs for Violation Notification 
Section 7.0: Mobile Video Units for Intersection Analysis 
Section 8.0: Video for Emergency Response Management  
Section 9.0:  Conclusions and Recommendations 
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Section 2   
CARE Analysis for Identification of Video Surveillance Locations 

 
 
Introduction 
 
Video surveillance is beneficial if the surveillance occurs at the same location as traffic 
incidents.  To develop appropriate countermeasure for locations with high incidents of traffic 
crashes, a study is required to identify these locations.  The necessary data for this purpose can 
be obtained from the Critical Analysis Reporting Environment (CARE®) database, which 
provides a comprehensive record of traffic crash information in the State of Alabama.  This data 
is distributed to traffic safety professionals who perform investigations and select 
countermeasures.   
 
To gauge the potential impact of video technology applications, three specific types of crashes 
were examined related to red-light running (RLR), speeding, and railroad-grade crossings for the 
years 1994-2000 in Alabama.  This section of the report includes an overview of the CARE® 
software, the method of data acquisition, and analyses of information for the purpose of the 
intended study. 
 
 
CARE® Overview 
 
CARE® is one of the most sophisticated systems designed for crash problem identification.  It is 
a software system that provides accident information to decision-makers involved with traffic 
safety.  These individuals then analyze the potential crash causes and develop solutions to 
combat specific types of traffic crashes.  CARE® was developed at The University of Alabama to 
provide a simple tool to access the vast database associated with accident information, and it 
exists on two platforms: desktop and Internet (http://care.cs.ua.edu). 
 
Some of the CARE® capabilities are listed below: 

• CARE® gives information on high-accident location (by frequency) with a graphical 
display for major roadways.   

• CARE® is designed for problem identification and countermeasure development for 
crashes associated with alcohol, speed, RLR, railroad crossings, etc. 

• CARE® produces statistics that allow visualization of statistically significant results. 
• CARE® acts as a “front end” to many statistical processors, and is fully compatible with 

existing data-oriented software packages such as MS-Access and MS-Excel (Keith and 
Brown, 2002).  

• CARE® automatically prioritizes counties, cities, and even intersections or road segments 
by the number of crashes for a particular query. 



4 

CARE® can be divided into three components: 1) a dataset, 2) a filter, and 3) an analysis process.  
The system is query-based, which means to run CARE® and analyze information, a dataset and a 
filter are needed.  The complete dataset consists of accident and occupant data from the years 
1994 to the present for the State of Alabama.  To make the data more manageable a subset can be 
generated and employed in subsequent queries through a filter.  A filter is a specification used to 
restrict processing of a particular query.  Various types of CARE® analyses can be performed 
with a selected filter.  Two analyses reported in this work were: 1) Frequency Analysis, a simple 
count and percentage provider and 2) Cross-tabulation, a simultaneous summary of two different 
variables that includes counts and percentages. 
 
Apart from these two analyses, CARE also provides advanced features like an IMPACT 
analysis, HOTSPOT locations, Intersection Magic, ACT, and DataGen.  IMPACT provides 
outputs in a worst-first order for each variable and identifies scenarios where appropriate counter 
measures may reduce maximum incidents.  HOTSPOT can be employed to list details of 
intersections with the highest numbers of crashes.  A description of these preprogrammed 
analyses can be found in Brown and Turner, 2002. 
 
 
CARE® Analysis for Video Location Identification 
 
CARE® was used to develop a criteria for determining high accident locations in Alabama 
focusing on RLR, speeding, and railroad related crashes.  These crash types were selected 
because they were the subject of ongoing research focused on employing video technology as a 
countermeasure (McFadden and Graettinger, 2000).  The analysis was performed for the entire 
State of Alabama, for counties with the highest crash rates, and for the City of Tuscaloosa.    
Variables such as month, day of the week, time, primary contributing circumstances, number of 
injuries and fatalities, age of the driver, gender, traffic control unit, direction of travel, speed 
limit, traffic lanes, accident severity, and weather conditions assisted in refining the data retrieval 
for the most probable causes for the accidents.   
 
As an example, the following steps describe the procedure to retrieve accident data for the City 
of Tuscaloosa for the three categories of crashes:  
 
Step 1: The 1994-2000 Alabama accident dataset was selected. 
Step 2: Using the “create filter” option in CARE®, new filters T-City (City of Tuscaloosa), RLR 

(red-light running - fail to heed to signal/sign with a traffic signal), Speeding (speeding), 
and RR (railroad grade crossings-related) were generated. 

Step 3: Using the filter combination option in CARE®, the generated filters were then combined 
as T-City-RLR, T-City-speeding, and T-City-RR. 

Step 4: To select the most critical scenario, specific analyses like frequency, cross tabulation, 
IMPACT, and HOTSPOT were performed for crash variables. 

 
The retrieved information was summarized in the form of tables and bar charts.  Based on the 
results obtained from the CARE® system, general crash trends for Alabama and the City of 
Tuscaloosa were analyzed and reported.   
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It should be noted that CARE® retrieved the accident data by number of crashes only, and did not 
consider total vehicular volume or number of violations at or near the crash location.  Another 
limitation of using CARE® is the potential legal repercussions associated with the release of the 
specific locations of high crash incidents.  Therefore, this report uses cities as the smallest 
geographic area although specific high incident intersections can be identified in a similar 
manner.  IMPACT and HOTSPOT were beneficial in identifying intersections for video 
surveillance, although the results are not reported herein.  In many cases, due to the infrequency 
of some types of crashes, there was no statistical significance for choosing one intersection over 
another.  However, when used in appropriate situations with appropriate data, CARE® yields 
extremely useful safety information, which can be employed to help locate video surveillance 
units. 
 
 
General crash trends in Alabama 
 
Crash data related to Alabama RLR, speeding, and railroad grade crossings is summarized in 
Table 2-1.  It can be seen from Table 2-1 that the total number of railroad related crashes in the 
State is quite small (946) when compared to speed (51,231) and RLR (31,750) related crashes.  
This indicates that employing video surveillance to capture a railroad related crash would be 
difficult, but traffic behavior at a railroad grade crossing could be analyzed with the help of 
video.   
 

Table 2-1.  Summary of 1994-2000 Alabama accident data 
 

  Red-light running Speeding Railroad 

Property damage  22145 25974 484 

Injuries 9533 23271 390 

Fatal 72 1986 72 

Total crashes 31750 51231 946 

High accident rate:    

Month December May June 

Day of week Friday Saturday Thursday 

Time 3:00 PM - 4:00 PM 3:00 PM - 4:00 PM 4:00 PM - 5:00 PM 

Speed limit 31 – 35 mph 41 – 45 mph 21 – 25 mph 

Number of lanes 4 2 2 

Weather Clear Clear Clear 

 
Although there were more speed related crashes in the State than railroad or RLR related crashes, 
these crashes typically occur on two-lane roads with posted speed limits between 41 – 45 mph.  
This indicates a rural area where it would be difficult to capture a crash or even evaluate traffic 
behavior with video because the area to be covered is very large.  If one rural location produced 
a high crash rate, this could be a location for video surveillance.   
 
RLR is ideal for video surveillance.  First, there is a high rate of this type of crash.  Second, these 
crashes occur at specific locations, which are small enough to be captured on a single video 
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system.  Lastly, RLR crashes occur in an urban development, which lends itself to permanent 
video systems like the system in Tuscaloosa.   
 
The annual statistics of Alabama-specific crash severity for the years 1994-2000 are reported in 
Tables 2-2, 2-3, and 2-4.   
 

Table 2-2.  Annual Alabama red-light running crash data 
 
 
 
 
 
 
 
 
 

 
Table 2-3.  Annual Alabama speed-related crash data 

 
 
 
 
 
 
 
 
 

 
 

Table 2-4.  Annual Alabama railroad grade crossing crash data 
 
 
 
 
 
 
 
 
 
 
The City of Tuscaloosa specific crash statistics for variables like time, day of the week, month, 
age of the driver, condition of the driver, gender, speed limit, number of traffic lanes, and 
weather conditions are summarized in Table 2-5.   
 

 
 

 

Year Property damage only Injuries Fatalities Total 

1994 3142 1398 9 4549 

1995 3175 1365 9 4549 

1996 3223 1350 10 4583 

1997 3061 1420 12 4493 

1998 3248 1384 15 4647 

1999 3224 1395 9 4628 

2000 3072 1221 8 4301 

Year Property damage only Injuries Fatalities Total 

1994 3075 2905 224 6204 

1995 3433 3104 297 6834 

1996 3705 3183 297 7185 

1997 4006 3667 302 7975 

1998 4024 3610 299 7933 

1999 3946 3542 290 7778 

2000 3785 3260 277 7322 

Year Property damage only Injuries Fatalities Total 

1994 86 85 8 179 

1995 84 67 11 162 

1996 77 60 13 150 

1997 59 53 13 125 

1998 62 50 10 122 

1999 60 44 9 113 

2000 56 31 8 95 
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Table 2-5.  Summary of 1994-2000 Tuscaloosa accident data 
 
 
 
 
 
 
 
 
 
 
 
 
Red-light running crashes and trends 
 
Red-light running crash data is reported in Table 2-6 for the counties with the most crashes, and 
in Table 2-7 for cities with the most crashes.  Table 2-8 and column two of Table 2-5 present 
detailed findings of RLR-related crashes in the City of Tuscaloosa for the years 1994-2000.   
 

Table 2-6.  Selected county red-light running crash data 
 

Year Jefferson Mobile Montgomery Madison Tuscaloosa Calhoun 

1994 1058 633 460 405 202 176 

1995 1082 622 458 391 229 154 

1996 1072 624 477 376 231 166 

1997 946 704 423 406 213 136 

1998 1010 676 453 424 258 117 

1999 930 621 470 470 266 119 

2000 889 625 407 427 229 117 

Total 6987 4505 3148 2899 1628 985 
 
 

Table 2-7.  Selected city 1994-2000 RLR related crashes 
 

Ranking City name No. of crashes 

1 Birmingham 4008 

2 Mobile 3353 

3 Montgomery 3129 

4 Huntsville 2717 

5 Tuscaloosa 1417 

6 Florence 857 

7 Dothan 816 

8 Gadsden 692 

9 Decatur 665 

10 Mobile Rural 663 

11 Auburn 636 

12 Anniston 621 

High accident rate: Red-light running Speeding Railroad grade crossings 

Month October August August 

Day of week Friday Friday Wednesday 

Time 5:00 PM - 6:00 PM 3:00 PM - 4:00 PM 8:00 - 9:00 (AM and PM) 

Speed limit 41 – 45 mph 21 – 25 mph 21 – 25 mph 

Number of lanes 6 or more 2 2 

Weather Clear Clear Clear 

Number of occupants  1 1 1 

Light conditions Daylight Daylight Daylight 

Age of the driver 25 - 34 years 25 - 34 years 25 - 34 years 
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Table 2-7 shows that the City of Tuscaloosa stands fifth in the state with 1417 RLR-related 
crashes out of a total of 31,750 RLR crashes in Alabama.  It should be noted that these numbers 
are not per capita; therefore, one would expect larger cities to have a larger total number of 
crashes.  Table 2-8 shows RLR crashes in each of the severity categories (property damage, 
injuries, and fatalities), which remained approximately the same in Tuscaloosa between the years 
1994 - 2000.   
 

Table 2-8.  Tuscaloosa red-light running crash data 
 

Year Property damage only Injuries Fatalities Total 

1994 118 56 0 174 

1995 133 65 1 199 

1996 144 62 2 208 

1997 128 56 0 184 

1998 152 75 2 229 

1999 152 80 0 232 

2000 134 57 0 191 

 
About 36% of these crashes in Tuscaloosa happened on roads of six or more lanes, and about 
38% happened on roads with a speed limit between 41-45 mph (city major roads).  Friday 
experienced relatively more crashes than any other day in a week, and 5:00 PM-6:00 PM was the 
most crash prone time of the day.      
 
Speed related crashes and trends 
 
Speed-related crashes for the counties with the most accidents are presented in Table 2-9, while 
Table 2-10 reports the cities with the most accidents.  Table 2-11 and column three of Table 2-5 
present detailed findings of speed-related crashes in the City of Tuscaloosa for the years 1994-
2000.    
 

Table 2-9.  Selected county speed-related crash data 
 

Year Jefferson Mobile Tuscaloosa Madison Calhoun Baldwin 

1994 915 351 272 254 243 198 

1995 899 361 279 300 244 179 

1996 839 378 273 289 233 224 

1997 800 430 339 309 246 216 

1998 721 403 357 311 282 312 

1999 730 401 362 332 301 179 

2000 672 369 333 332 290 236 

Total 5576 2693 2215 2127 1839 1544 
 

Tuscaloosa County had the third highest number of speed-related accidents from 1994 through 
2000.  And, speed-related crashes were more severe than general crashes.  Speed related crashes 
in the City of Tuscaloosa occurred on Friday more frequently than any other day and almost 50% 
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happened on roads with a speed limit of 21-25 mph (mostly residential areas).   The frequency of 
crashes was observed to be higher between 3:00 PM - 4:00 PM. 
 

Table 2-10.  Selected city 1994-2000 speed-related crashes 
 

Ranking City name No. of crashes

1 Jefferson Rural 2108 

2 Birmingham 1495 

3 Mobile Rural 1314 

4 Tuscaloosa Rural 1291 

5 Baldwin Rural 1212 

6 Madison Rural 1193 

7 Calhou Rural 1081 

8 Talladega Rural 1050 

9 Mobile 989 

10 Walker Rural 797 

11 Montgomery 774 

12 Tuscaloosa 708 

 
 

Table 2-11.  Tuscaloosa speed-related crash data 
 

Year Property damage only Injuries Fatalities Total 

1994 67 30 2 99 

1995 65 35 1 101 

1996 67 47 2 116 

1997 67 33 3 103 

1998 70 37 1 108 

1999 56 41 1 98 

2000 50 32 1 83 

 
Railroad (RR) related crashes and trends 
 
Selected county and city crash data related to railroad grade crossing accidents are summarized 
in Tables 2-12 and 2-13.  Detailed accident information for the City of Tuscaloosa during the 
years 1994 - 2000 is summarized in Table 2-14 and in column four of Table 2-5.  Due to the 
small number of crashes in Tuscaloosa, almost no conclusions can be drawn from the CARE® 
data.  From the data, the highest rate of railroad related crashes occurred on Wednesdays 
between 8:00 - 9:00 AM and PM.  Although there were no fatalities, each railroad accident 
caused property damage and the possibility of the accident being fatal was very high.  It should 
be noted that due to the small number of railroad-related crashes, any spike or hotspot in the data 
is most likely random and do not indicate a trend in these crashes. 
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Table 2-12.  Selected county railroad grade crossing crash data 
 

Year Jefferson Mobile Tuscaloosa Escambia Talladega Dallas Lee 

1994 32 16 6 17 5 3 5 

1995 31 6 10 4 12 3 2 

1996 21 20 7 6 2 7 0 

1997 16 16 8 5 5 9 6 

1998 17 11 15 4 3 4 6 

1999 23 5 4 7 3 2 4 

2000 9 7 4 1 5 4 9 

Total 149 81 54 44 35 32 32 
 
 

Table 2-13.  Selected city 1994-2000 railroad related crashes 
 

Ranking City name No. of crashes

1 Brimingham 95 

2 Tuscaloosa 36 

2 Mobile 36 

3 Montgomery 27 

3 Mobile Rural 27 

4 Colber Rural 25 

5 Bessemer 21 

5 Selma 21 

6 Jefferson rural 18 

6 Atmore 18 

7 Auburn 17 

7 Morgan Rural 17 

 
 

Table 2-14.  Tuscaloosa railroad grade crossings accident data 
 

Year Property damage only Injuries Fatalities Total 

1994 4 0 0 4 

1995 4 3 0 7 

1996 4 2 0 6 

1997 3 3 0 6 

1998 7 1 0 8 

1999 2 0 0 2 

2000 3 0 0 3 
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Video technology locations based on CARE® data 
 
Crash related information generated by CARE® can be useful in understanding crash scenarios.  
The dataset employed by CARE® has location information down to the intersection level, 
although in this report City was the smallest geographic area reported.  CARE® retrieves crash 
details of intersections that have the most incidences, which on occasion may list intersections 
that had only one accident of a specific type.  An example of this is railroad-related crashes 
where there may only be one occurrence in an entire City or County.  Hence, it is recommended 
to analyze other parameters like history of violations, traffic volume, and neighborhood 
characteristics to select locations for installing video equipment.  Data acquisition from CARE® 

can be used to summarize the crash statistics at four different levels – state, county, city, and 
location (intersection or road link).  This compilation allows decision makers to select locations 
with the highest numbers of specific types of crashes for further study.  The use of parameters 
like speed limit and traffic lanes for choosing video locations further refines potential video 
locations. 
 
It can be concluded that CARE® can aid, but cannot be the sole basis for development of the 
criteria to select locations for the deployment of a video-based technology.   
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Section 3 
Compositional Traffic Counting Using Video Technology 

 
 
Introduction 
 
To assess highway system performance, states are required to submit numerous annual 
compositional traffic count reports to the Federal Highway Administration (FHWA).  
Compositional counts represent the volume by type (trucks, trailers, buses, recreational vehicle, 
automobiles, motorcycles, etc.).  These classifications are based on axle arrangement, number of 
trailers, and other vehicle characteristics.  This data is typically collected manually or by 
automatic counters.   
 
The primary objective of this portion of the research was to evaluate the use of video-based 
technology for vehicle classification, and to develop a methodology for obtaining compositional 
vehicle counts solely using video.   
 
 
Background  
 
The FHWA’s Office of Highway Information Management conducts a national program that 
assembles traffic reports furnished by individual state highway agencies into a national database 
entitled Highway Performance Monitoring System (HPMS).  These compositional traffic counts 
are important traffic data used to support decision-making and design processes.  These counts 
can be used for a variety of purposes, some of which are mentioned below (TMG, 2001): 
  

1. planning and programming of transportation facilities,  
2. pavement design and rehabilitation,  
3. apportionment of pavement damage, 
4. compliance with vehicle weight regulations,  
5. development of geometric design standards,  
6. compliance and regulatory policy development of truck dimensions,  
7. safety analysis,  
8. traffic operation and control,  
9. analysis related to highway bridges, 
10. estimating truck traffic for highway cost allocation studies, 
11. predicting traffic volumes for roadways, and 
12. aiding in the formulation of air quality models. 
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HPMS reporting requirements suggest that States are to submit vehicle classification data by 14 
categories (13 vehicle categories and 1 unknown category) under each of the 12 roadway 
functional classes as shown in Table 3-1.   There is a growing controversy over this procedure 
because the vehicle classification data collectors prefer to report fewer classes while the users of 
the data prefer more classes.    
 

Table 3-1.  Vehicle classification data by roadway functional class as reported to HPMS 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Single Unit Truck Single Trailer Truck Multi-Trailer Truck Passenger 
car 

Light 
truck 

 
Functional 

System Motor 
Cycle 

2 axle, 
    4 tires 

Other 
 2 axle, 
  4 tires 

Bus
2 axle
6 tire 3 axle 4 axle

or less
4 axle 

or more 5 axle 6 axle 
or more

5 axle 
or less 6 axle 7 axle 

or more

Un- 
known

RURAL 

1 Interstate               

2 
Other 

Principal 
Arterial 

              

3 Minor 
Arterial               

4 Major 
Collector               

5 Minor 
Collector               

6 Local               

URBAN 

7 Interstate               

8 
Other 

Principal 
Arterial 

              

9 Minor 
Arterial               

10 Major 
Collector               

11 Minor 
Collector               

12 Local               

 
Until the development of non-intrusive technologies (video-based, microwave radar, and infrared 
sensors), the methods for collecting traffic volume and vehicle classification counts were limited 
to manual counts, road tubes, and inductive loops.  These conventional methods had limitations 
such as traffic disruption, staff safety, and efficiency of data collection.  Recently developed 
technologies including video and radar can be mounted overhead or to the side of the roadway.  
They do not disrupt traffic, and they increase staff safety.    
 
The advent of video with image processing created several options for traffic data collection.  
Advantages of video vehicle detectors are: multi-lane data collection by one detector, collection 
of a large variety of traffic data, and visual traffic surveillance.  Video systems have 
disadvantages such as a drop in performance under certain environmental conditions.  In addition 
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to environmental issues, video technology classifies vehicles in fewer groups than the 14 FHWA 
classes.  Hence, there is a need for a methodology that can take video data and produce the 14 
FHWA classes.  This was the focus of this research section. 
 
 
Video Cameras and Image Processor 
 
Video image processors employ machine vision technology to automatically analyze video 
images.  A video image processor system consists of one or more cameras, whose data is 
processed and digitized either in the camera unit itself or is fed to a computer.  Application-
specific software for interpreting the images to extract information for traffic surveillance and 
control is available (Sami Mohamed, 1996).  Similar to inductive loops, video places “virtual 
loops” in the area of interest to detect changes as a vehicle passes.  The image processing 
algorithms analyze the variation of gray levels in the group of pixels contained in the video 
image plane.  Traffic flow parameters such as volume, flow rate, speed, presence, occupancy, 
density, queue length, headway, dwell time, and classification based on length can be calculated 
by analyzing successive video frames (FHWA-PL-97-018, 1997). 
 
Image processing technology does not require color for the detection process and hence can use 
monochrome cameras.  These cameras can provide continuous live coverage of traffic, and the 
software allows placement of virtual loop detectors and detection boxes on the TV or computer 
screen without disrupting traffic.  As in inductive loops, a signal is generated when a car passes 
through a virtual detector and a single video unit can manage multiple detectors placed in 
multiple lanes (Hani, 1999).  Advantages include the ability to cover a wide area, along with the 
ability to rapidly extract a variety of traffic parameters.  Some limitations of video include 
occlusion, shadowing, salt grime, icicles, cobwebs, and inability to perform well in adverse 
weather conditions.   
 
Some of the systems that are available in the market are Video Trak-900, Autoscope Solo Pro 
used in this work and shown in Figure 3-1, TraFicon VIP 3.1, and Vantage One video detection 
systems.  Since these systems are much safer and easier to use than loops or tubes, research is 
being conducted to minimize the drawbacks associated with these systems.   
 

 

 
 

Figure 3-1.  Autoscope Solo Pro camera 
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Although the permanent installation costs of video systems are expensive, their flexibility and 
low maintenance costs make them a cost-effective means of obtaining traffic data.  In addition, 
these systems are portable and can be set up inexpensively for short-term analyses. 
 
All video image systems collect classification information based on vehicle length, which 
classifies vehicles into fewer and more general categories than the 14 FHWA classes (TMG, 
2001).  This is because: 
 
• broad vehicle length categories reduce the amount of error associated with misclassification, 

as video classifiers are not accurate enough in measuring small differences in vehicle length. 
• video cannot differentiate between long vehicles (trucks) and small vehicles with trailers 

(boat trailers) of equal lengths. 
• small differences in truck lengths are difficult to identify and hence it is advisable to group 

all trucks together. 
 
According to the Traffic Monitoring Guide (TMG), four vehicle length categories are sufficient 
for most analytical purposes, which primarily require data on heavy trucks and light vehicles.  
These four traditional classes reflect passenger cars, single unit trucks, single-trailer combination 
trucks, and multi-trailer trucks.  As suggested in the TMG, Table 3-2 shows the vehicle length 
boundaries typically used to estimate the four vehicle classes (TMG, 2001).   
 

Table 3-2.  Vehicle classification based on length given by Traffic Monitoring Guide 
 

Vehicle Class Boundaries 

Passenger vehicles 0 - 13 ft 

Single unit trucks 13 - 35 ft 

Combination trucks 35 - 61 ft 

Multi-trailer trucks 61 - 120 ft 

 
Advanced video cameras with machine vision processors (MVP), such as Autoscope, can 
process and store up to five vehicle classes based on length.  This is insufficient for FHWA 
classification, hence, a methodology was developed at the University of Alabama during this 
project to generate the 14 FHWA vehicle classes from Autoscope classes.   
 
 
Experimental Design 
 
A vehicle classification disaggregation (VCD) model was developed based on a disaggregation 
process, which was introduced in stochastic hydrology by Valencia and Schaake (1973) for 
generating (or disaggregating) seasonal, monthly, weekly, daily, and even hourly variations in 
rainfall using a series of historical annual rainfall data.  This method is very popular as it 
conserves all linear relationships between variables at successive levels, and preserves the long 
and short-term variance and covariance properties, including seasonal variations (Valencia and 
Schaake, 1973).  Using the principle of disaggregation, a model was developed at The University 
of Alabama for estimating the 14 FHWA vehicle classes from as few as two Autoscope length-
based classifications.  The next section contains a detailed description of the equipment used, site 
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selection process, procedures adopted, and problems encountered, to perform the traffic data 
collection needed to develop the disaggregation methodology. 
 
Equipment and cost 
 
For the purpose of this research, the Autoscope Solo Pro MVP was chosen because of its 
enhanced features such as color imaging; integrated zoom lens; and ability to detect, count, and 
store five vehicle categories based on length (Econolite, 2001).  The portable Autoscope Solo 
Pro MVP setup used to perform the data collection consisted of the following components.    
 

1. Autoscope Solo Pro MVP camera ($8000) 
2. Interface panel and Minihub ($1000) 
3. Laptop or PC to store the data ($1400) 
4. Solo MVP 30 foot cable ($350) 
5. Gas generator to supply power to the above equipment ($400) 
 

The total cost of the portable setup was approximately $11,000.  Figure 3-2 shows the Autoscope 
installation in the field.  It should be noted that an Autoscope field setup takes very little space 
and can be established in 15 minutes.   

 

 
 

Figure 3-2.  Autoscope field setup 
 
Site Selection 
 
For the purpose of selecting a site, ALDOT officials were contacted and a list of locations was 
obtained where ALDOT maintains axle counters.  As shown in Figure 3-3, a site on Interstate 65 
at milepost 210 in the City of Clanton was selected for two reasons.   
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Figure 3-3.  Location of  Autoscope at milepost 210 on I-65 
(courtesy: Microsoft Streets & Trips 2001) 

 
First, an ALDOT axle counter is located there.  Second, the presence of an overhead bridge just 
above the axle counters provided a location for temporary installation of an Autoscope camera.  
The camera was placed on the bridge railing above the southbound lanes at a height of 23 feet.  
The axle counters were functional for both northbound and southbound traffic on I-65, which 
allowed data collection in either direction.  The field setup at the Clanton site is shown in Figure 
3-2.   
 
Period of I-65 data collection 
 
Video data was collected eight hours per day on three weekdays (Monday, Wednesday, and 
Friday) for two weeks.  A total of 28 hours of useful data was obtained for this research.  The 
majority of the data (25 hours) was used to develop the vehicle classification disaggregation 
(VCD) model while the remaining portion (3 hours) was used to evaluate the performance of the 
model.   
 
Procedure for data collection by Autoscope  
 
Video detection requires a clear view of the area in which detection is desired.  The video image 
must be calibrated to establish a relationship between the ground and the camera’s field of view. 
For this purpose, lane widths, down lane distances, and the camera height were measured.  
Calibration lines representing the ground measurements were digitally placed on the video image 
parallel and perpendicular to the traffic lanes.  By placing the calibration lines on the image in 
the same location as the ground measurements, the image was calibrated to the ground. 
 
After calibrating the field of view, detector files were created using the Autoscope software.  
These detectors were placed on the video image and treated as “virtual” loops.  Detector files 
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play an integral part in the accuracy of machine vision counts for volume, speed, classification, 
and other parameters.  While creating detector files, care should be taken with areas of occlusion, 
areas of weaving traffic, and relative vehicle position in the lane to avoid missing detection.  
Typical detectors types are presence, count, speed, and station detectors, which can be combined 
to create a “detector function” to provide customized output.   
 
Once detectors were in place and the detector configuration had been downloaded into 
Autoscope, polling (recording) of data begun.  Vehicle detection was carried out with a 
superimposed image of the traffic on the computer screen.  Autoscope continuously provided 
detector outputs and stored traffic data in its internal non-volatile memory to protect against 
power failure.  The collected traffic and detection data was made available in a readily accessible 
ASCII (text) format. The computer software provided file management routines for efficiently 
filing, retrieving, and reporting of the collected traffic data. 
 
Autoscope Length Classifications 
 
Autoscope has the capability to classify vehicles into a maximum of five categories based on 
length.  These categories are: vehicles less than 23 feet (class A), vehicles between 23 and 40 
feet (class B), vehicles between 40 and 75 feet (class C), vehicles between 75 and 80 feet (class 
D), and vehicles greater than 80 feet (class E).  A list of the 14 FHWA classes, the corresponding 
aggregated five Autoscope classes, and their length boundaries are summarized in Table 3-3.  
The table also shows two additional Autoscope classifications (Autoscope 3 classes and 
Autoscope 2 classes) that were evaluated at the site.  When comparing Autoscope and FHWA 
data where more Autoscope classes were used, the Autoscope count data became less accurate.  
Therefore, the disaggregation model was developed on the Autoscope two-class grouping where 
vehicles were classified as less than 23 feet (class A) and greater than 23 feet (class B), as shown 
in the last column of Table 3-3. 
 

Table 3-3.  Grouped FHWA and Autoscope classes used in VCD model development 
 

Class 
No 

 
FHWA Class 

 
Autoscope 
5 classes 

Autoscope 
3 classes 

Autoscope 
2 classes 

1 Motorcycles     
2 Passenger cars A: 0 - 23 feet A: 0 - 23 feet A: 0 - 23 feet 
3 Other 2-axle 4-tire       
     

4 Buses    
5 Single Unit Trucks 2-axle, 6-tire B: 23 - 40 feet   
6 Single Unit Trucks 3-axle     
     

7 Single Unit Trucks 4-axle or more  B: 23 - 80 feet B: > 23 feet 
8 Single Trailer Truck 4-axle or less    
9 Single Trailer Truck 5-axle  C: 40 - 75 feet   

10 Single Trailer Truck 6-axle or more    
11 Multi Trailer Truck 5-axle or less     

     
12 Multi Trailer Truck 6-axle D: 75 - 80 feet    

     
13 Multi Trailer Truck 7-axle or more    
14 Unknown E: > 80 feet  C: > 80 feet   
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In the two-class grouping, class A corresponds to FHWA classes one to three, and class B 
corresponds to FHWA classes four to 14.  Table 3-4 illustrates the comparison of data collected 
by Autoscope and the FHWA axle count data.   
 
Columns one and two of Table 3-4 are Autoscope counts for Class A and B denoted by X1 and 
X2.  Columns three and four are a summation of the FHWA axle count data for class one to three 
and class four-14 respectively.  Columns five and six show the difference between the two 
Autoscope classes and the corresponding aggregated FHWA classes.  A difference in the total 
hourly volume counts is shown in column seven, which ranges from –81 to +114, with a 
negligible average difference of –6 vehicles.  The mean and standard deviations of the 
corresponding columns shown in the last two rows indicates the range of differences in 
Autoscope and FHWA values for which the VCD model is developed.  The differences can be 
attributed to calibration errors, bad triggers caused by shadowing of vehicles, occlusion, time 
setting differences, and lane changing of vehicles near the axle counters.  These values were 
obtained from 28 hourly volume datasets gathered and analyzed for this research.   
 

Table 3-4.  Comparison between Autoscope and FHWA data 
 

Autoscope Data FHWA Data Difference Net Difference S.No 
X1 X2 sum (Y1 - Y3) sum (Y4 - Y14) col 1 – col 3 col 2 – col 4 col 5 + col 6 

Hours col 1 col 2 col 3 col 4 col 5 col 6 col 7 
1 672 163 713 159 -41 4 -37 
2 696 193 674 150 22 43 65 
3 743 200 813 187 -70 13 -57 
4 700 195 796 180 -96 15 -81 (min) 
5 764 182 783 161 -19 21 2 
6 848 211 847 166 1 45 46 
7 891 161 896 140 -5 21 16 
8 724 161 672 146 52 15 67 
9 731 220 746 207 -15 13 -2 

10 798 191 819 196 -21 -5 -26 
11 811 206 848 188 -37 18 -19 
12 905 244 932 171 -27 73 46 
13 944 181 962 144 -18 37 19 
14 816 162 722 142 94 20 114 (max) 
15 1130 201 1147 173 -17 28 11 
16 1454 214 1526 178 -72 36 -36 
17 1638 218 1722 194 -84 24 -60 
18 1824 216 1911 185 -87 31 -56 
19 1721 221 1834 159 -113 62 -51 
20 1634 193 1620 148 14 45 59 
21 692 174 742 166 -50 8 -42 
22 798 198 861 196 -63 2 -61 
23 757 193 817 191 -60 2 -58 
24 781 220 844 218 -63 2 -61 
25 789 177 804 163 -15 14 -1 
26 847 192 869 163 -22 29 7 
27 847 158 855 137 -8 21 13 
28 829 142 826 140 3 2 5 

 Mean = -29.18 22.82 -6.36 
Standard Deviation = 45.27 18.73 48.95 
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Vehicle Classification Disaggregation Model (VCD Model) 
 
The disaggregation process was introduced in stochastic hydrology for generating (or 
disaggregating) seasonal, monthly, weekly, daily, and even hourly variations in rainfall using a 
series of annual rainfall data.  This method is very popular as it conserves all linear relationships 
between variables at successive levels, and preserves the long and short-term variance and 
covariance properties, including seasonal variations.  The process has been successfully used for 
disaggregating rainfall data in Puerto Rico, streamflow data for the Colorado River the United 
States, and for the generation of hourly water demands in the Boston water distribution system 
(Valencia and Schaake, 1973).   
 
A similar model was developed at The University of Alabama during this research for estimating 
(disaggregating) the 14 FHWA classes (similar to 12 months in a year) from the aggregated 
Autoscope classes (similar to a aggregated seasonal or annual rainfall or stream flow data).  The 
goal was to develop a relationship between the two Autoscope classes and the 14 FHWA classes 
by taking into account the variance and covariance properties of the data.  Using these relations, 
the model would use Autoscope data for any hour as input information to generate FHWA data 
for that particular hour.   
 
The disaggregation model takes a simple mathematical form 
 

                                             Y = AX + BW  ……………………………………………….(3.1) 
 
where, Y is a (n × 1) vector of disaggregated values representing the 14 FHWA classes resulting 
from disaggregation process, X is a (m × 1) vector of values obtained from Autoscope classes, A 
is a (n × m) parameter matrix calculated to preserve covariance between aggregated (X) and 
disaggregated (Y) vectors, B is a (n × n) coefficient matrix calculated to preserve the proper 
covariance structure, and W is a (n × 1) vector of independently distributed standard normal 
deviates, which are randomly generated and normally distributed elements with a mean of µ = 0 
and variance of σ2 = 1.  In the model developed in this research, n = 14 represent the 14 FHWA 
classes and m = 2 represent the two Autoscope classes.  The approach assumes that all the data 
used to develop the model follow a normal distribution and that the system maintains consistency 
of the cumulative relation.  In other words, the sum of the generated disaggregated values should 
be equal to the given Autoscope values.  Practically, all these assumptions cannot be satisfied 
(Valencia and Schaake, 1973).  For example, the data used for this model need not follow a 
normal distribution.  
 
Parameter matrices A and B are obtained from the following equations: 
 
        A = SyxSxx

-1 ……………………………………………………(3.2) 
 

       BBT = Syy – SyxSxx
-1Sxy ……………………………………………(3.3) 

 
where, Sxx is the generated sample variances and covariances of the Autoscope classes, Syy is the 
generated sample variances and covariances of the 14 FHWA classes, and Syx is the generated 
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sample variances and covariances between the Autoscope and FHWA classes.  The resulting 
BBT matrix is always a positive semidefinite and should be decomposed to obtain matrix B 
(Valencia and Schaake, 1973).  A mathematical description of the disaggregation model, 
including a detailed discussion of parameter estimation procedures and decomposition of the 
BBT matrix is available in Rodriguez-Iturbe (1993).  Since the parameters for this calculation are 
determined from both Autoscope and FHWA data, the model will have properties that preserve: 
 

• the mean of FHWA data, 
• the variance and covariance of elements of Syy, 
• the variances and covariances between Y and X, Syx, and 
• the cumulative relations of disaggregated FHWA values that add up to the aggregated 

Autoscope values. 
 

After estimating the parameter matrices A and B, W matrix can be randomly generated.  Finally, 
using the X-values obtained from Autoscope data, new set of Y-values can be estimated, which 
resemble the historical data values of Y (14 FHWA classes) used to develop the model.  A 
flowchart representing the overview of the VCD model is shown in Figure 3-4. 
 

 
 

Figure 3-4.  Flowchart representing an overview of VCD model 
 
 
VCD model development 
 
This section discusses the procedure used to develop the VCD model for estimating the 
parameter matrices A and B.  The model was developed using weekday data on Interstate I-65 
and can be retrained for other locations and times.  For training purposes, the 14 FHWA classes 
(Y’s) were obtained from axle counters and the aggregated values (X’s) were obtained from 
Autoscope.  The VCD model was developed using two Autoscope classes, where the first 
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Autoscope class represented the aggregation of the first three FHWA classes, and the second 
Autoscope class combind the rest of the FHWA classes.   
 
The data collected from the FHWA axle counters and Autoscope were compiled and are 
presented in Table 3-5, wherein column headings Y1 to Y14 are the 14 FHWA classes.  Column 
headings X1 and X2 at the far right of the table are Autoscope classes.   
 
The rows numbered one through 28 contain the hourly volume in each vehicle class.  Below the 
28 hours of data are the minimum and maximum number (or range) of vehicles in each class 
used in the development of the VCD model.  The last two rows of the table are the calculated 
mean number of vehicles and standard deviation in each of the FHWA and Autoscope classes.  
The disaggregation model operates on aggregated values, regardless of their origin.  To evaluate 
the performance of the VCD model, it was first trained and validated using only FHWA data.   
 

Table 3-5.  Compilation of FHWA data and Autoscope data (28 datasets) 
 

S.No Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 X1 X2 
1 7 560 146 9 27 4 2 2 105 2 0 1 0 7 672 163 
2 7 545 122 16 26 3 3 3 89 1 1 1 0 7 696 193 
3 8 680 125 5 28 8 1 1 119 2 3 1 0 19 743 200 
4 4 672 120 12 21 6 1 1 128 0 0 0 0 11 700 195 
5 6 642 135 5 15 4 1 3 128 0 0 0 0 5 764 182 
6 9 694 144 2 21 9 0 1 119 6 1 0 0 7 848 211 
7 11 737 148 2 18 5 0 2 99 4 1 1 0 8 891 161 
8 9 594 69 5 21 5 0 2 106 0 2 0 0 5 724 161 
9 8 624 114 7 21 8 0 3 156 5 1 0 0 6 731 220 

10 7 676 136 8 26 7 0 2 137 1 0 0 0 15 798 191 
11 7 713 128 4 22 5 0 2 146 3 0 0 0 6 811 206 
12 7 752 173 3 22 4 1 3 126 3 1 0 0 8 905 244 
13 8 785 169 5 15 1 0 3 109 1 3 0 0 7 944 181 
14 8 585 129 3 16 5 0 0 107 2 3 1 0 5 816 162 
15 15 950 182 10 28 6 0 2 109 5 2 0 0 11 1130 201 
16 11 1299 216 8 33 9 0 2 102 1 5 2 0 16 1454 214 
17 15 1471 236 7 37 5 0 6 119 1 3 2 0 14 1638 218 
18 10 1583 318 8 33 14 0 2 115 0 0 0 0 13 1824 216 
19 16 1550 268 5 23 3 0 0 111 1 1 0 0 15 1721 221 
20 7 1388 225 4 23 8 0 0 103 1 1 0 0 8 1634 193 
21 12 603 127 8 32 7 0 2 106 1 1 3 0 6 692 174 
22 7 664 190 13 38 10 0 1 113 6 0 2 0 13 798 198 
23 9 671 137 4 36 14 2 2 117 1 2 1 0 12 757 193 
24 4 707 133 12 29 3 1 3 150 4 2 0 0 14 781 220 
25 12 666 126 5 25 4 0 4 115 4 0 0 0 6 789 177 
26 10 719 140 2 22 5 1 2 116 4 1 0 1 9 847 192 
27 11 674 170 4 19 2 1 1 90 6 2 2 0 10 847 158 
28 9 673 144 3 15 7 0 0 101 2 1 1 0 10 829 142 

Min 4 545 69 2 15 1 0 0 89 0 0 0 0 5 672 142 
Max 16 1583 318 16 38 14 3 6 156 6 5 3 1 19 1824 244 

Mean 9.29 853.57 163.89 6.14 24.71 6.39 0.43 2.00 117.57 2.50 1.46 0.68 0.07 10.11 996.86 193.46
SD 3.005 316.97 52.39 3.63 6.705 3.14 0.79 1.319 16.478 1.97 1.249 0.87 0.189 3.893 347.429 24.102
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Training and validating the model using only FHWA data:  For this purpose, instead of using 
Autoscope data, the values of X1 and X2 were obtained by summing the FHWA classes one to 
three and FHWA classes four to 14.  This was performed to comply with the underlying 
assumption of the cumulative relation.  The eight-step procedure explained below was followed 
to train and validate the VCD model.   
 
The disaggregation process was developed and can be verified with the following steps: 
 

1. To develop the model, the data is transformed to have a zero mean using the following 
equations 3.4 and 3.5. 

      Yijt = Yij – Y’
j …………..……….…………………………..(3.4) 

 
     Xikt = Xik – X’

k ………………………………………..……..(3.5) 
where i = 1 to 28 and is the hourly datasets, j = 1 to 14 and is the FHWA classes, k = 1 
and 2 and is the aggregated values from FHWA data representing Autoscope data, t is the 
transformed data, Y’

j is the mean number of vehicles in each of the FHWA classes, and 
X’

k is the average number of vehicles in each of the aggregated FHWA classes. 
2. The transformed data was used to compute the basic statistics of each column, which 

included mean, standard deviation, variance, and covariance.   
3. All variances and covariances were determined to construct the Sxx, Syy, and Syx matrices, 

which were stored and used to obtain the parameter matrices A and B.  It should be noted 
that the matrices remained constant throughout the model development process. 

4. A MATLAB program was designed to perform the matrix operations associated with 
equations 3.2 and 3.3 to determine the parameter matrices A and B.     

5. The MATLAB program used the calculated parameter matrices A, B, a dataset of 
transformed X-values, and a generated normally distributed random number array (W 
matrix) to perform the calculations associated with equation 3.1 to produce a set of Y-
values.   

6. To minimize bias in the VCD model due to the randomness of the W matrix, the model 
was run 10,000 times for one dataset of transformed X-values by generating the W matrix 
10,000 times.  This lead to the generation of a set of fourteen Y-values that were the 
averages over each 10,000 runs. 

7. The generated Y-values (average over 10,000 runs) were re-transformed by adding the 
actual means, Y’

j to obtain a new set of final Y-values.   
8. Likewise, the remaining datasets of transformed X-values were used to generate a total of 

28 new sets of final Y-values.  Statistics of these 28 new datasets were obtained and 
compared with the statistics of the input data to evaluate the performance of the model.  
If the VCD model output exhibited similar statistical properties, it was assumed to be 
viable.   

 
The VCD model output is shown in Table 3-6 where the first 28 rows are the generated Y-
values, and the next two rows are the mean number of vehicles and standard deviation observed 
in each of the 14 FHWA classes.  The differences between actual and generated values are 
shown in Table 3-7.  It can be seen in Table 3-7 that the average of the differences for all 28 sets 
for each of the 14 FHWA classes is almost zero, indicating a negligible average difference 
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between the true and predicted values.  To determine the proximity of VCD model generated 
values to the true values, confidence intervals were estimated for the generated data.  The 
procedure adopted for determining the confidence intervals is described in the following section. 
 

Table 3-6.  Output of VCD model (28 datasets) 
 

S. No Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 

1 8.41 542.70 117.72 5.65 20.95 5.15 0.63 1.52 107.34 2.46 1.14 0.90 0.04 7.52 

2 7.73 587.43 124.32 6.95 24.15 5.73 0.78 2.13 121.71 2.93 1.12 0.59 0.05 8.97 

3 7.73 634.26 131.29 7.17 24.91 5.92 0.75 2.25 124.50 2.93 1.14 0.50 0.05 9.40 

4 7.57 592.53 124.90 6.99 24.21 5.79 0.78 2.13 122.85 2.94 1.10 0.54 0.05 9.02 

5 8.35 638.63 132.17 6.32 23.14 5.64 0.63 1.87 114.94 2.62 1.18 0.71 0.05 8.65 

6 7.97 735.74 146.96 7.45 26.31 6.26 0.71 2.41 127.64 2.91 1.19 0.42 0.05 10.22 

7 9.60 734.57 147.68 5.16 21.45 5.47 0.42 1.38 101.38 1.99 1.32 0.98 0.04 8.14 

8 8.72 587.05 124.62 5.53 20.95 5.20 0.57 1.46 105.31 2.31 1.19 0.93 0.04 7.61 

9 7.09 639.46 131.59 8.00 26.86 6.27 0.87 2.65 134.82 3.34 1.08 0.27 0.06 10.25 

10 8.26 676.62 137.98 6.71 24.21 5.83 0.67 2.03 118.47 2.68 1.20 0.62 0.04 9.28 

11 7.87 699.05 141.54 7.23 25.59 6.11 0.72 2.30 125.96 2.92 1.16 0.45 0.05 9.90 

12 7.31 811.91 158.18 8.72 29.70 6.92 0.83 3.02 142.73 3.39 1.20 0.08 0.05 11.87 

13 9.30 796.76 156.86 5.86 23.53 5.94 0.44 1.71 110.52 2.25 1.33 0.75 0.04 9.23 

14 9.18 668.51 137.72 5.40 21.35 5.41 0.47 1.42 103.64 2.18 1.24 0.95 0.04 7.93 

15 9.78 976.80 183.71 6.41 26.04 6.53 0.37 2.04 116.21 2.19 1.46 0.59 0.03 10.72 

16 11.11 1273.00 229.00 6.33 28.16 7.22 0.10 2.11 115.37 1.75 1.69 0.51 0.02 12.28 

17 11.95 1439.00 254.69 6.20 29.18 7.62 -0.07 2.07 113.36 1.45 1.85 0.51 0.02 13.14 

18 13.01 1601.90 279.83 5.73 29.50 7.89 -0.27 1.92 108.02 1.03 2.02 0.60 0.01 13.66 

19 12.31 1514.90 266.57 6.09 29.76 7.83 -0.14 2.09 113.12 1.34 1.91 0.52 0.02 13.55 

20 12.65 1415.70 251.81 5.12 26.66 7.22 -0.20 1.55 100.80 1.07 1.89 0.80 0.01 12.07 

21 8.18 568.72 121.68 6.10 22.20 5.40 0.67 1.76 112.47 2.58 1.15 0.78 0.05 8.04 

22 8.06 681.15 138.66 6.96 24.87 5.94 0.71 2.16 122.03 2.81 1.19 0.55 0.05 9.51 

23 8.02 641.42 132.64 6.79 24.24 5.77 0.72 2.11 120.27 2.80 1.18 0.60 0.05 9.17 

24 7.33 683.90 138.27 7.90 27.04 6.33 0.83 2.62 133.64 3.22 1.14 0.30 0.06 10.43 

25 8.65 657.02 135.33 6.03 22.63 5.58 0.58 1.72 111.69 2.45 1.20 0.77 0.04 8.51 

26 8.52 719.71 144.79 6.57 24.46 5.97 0.60 2.02 118.13 2.62 1.24 0.62 0.04 9.39 

27 9.48 692.46 141.14 5.11 20.91 5.34 0.42 1.32 100.76 2.05 1.28 1.00 0.04 7.76 

28 9.85 664.15 136.86 4.45 19.24 4.98 0.35 1.01 93.26 1.81 1.30 1.16 0.03 7.07 

Mean 9.07 816.97 159.59 6.39 24.72 6.12 0.50 1.96 115.75 2.39 1.32 0.64 0.04 9.76 

SD 1.68 315.17 48.27 0.98 2.95 0.81 0.33 0.45 11.40 0.65 0.28 0.24 0.01 1.87 
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Table 3-7.  Summary of differences between FHWA data and Autoscope data (28 datasets) 
 

S. No Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 

1 -1.41 17.30 28.28 3.35 6.05 -1.15 1.37 0.48 -2.34 -0.46 -1.14 0.10 -0.04 -0.52

2 -0.73 -42.43 -2.32 9.05 1.85 -2.73 2.22 0.87 -32.71 -1.93 -0.12 0.41 -0.05 -1.97

3 0.27 45.74 -6.29 -2.17 3.09 2.08 0.25 -1.25 -5.50 -0.93 1.86 0.50 -0.05 9.60 

4 -3.57 79.47 -4.90 5.01 -3.21 0.21 0.22 -1.13 5.15 -2.94 -1.10 -0.54 -0.05 1.98 

5 -2.35 3.37 2.83 -1.32 -8.14 -1.64 0.37 1.13 13.06 -2.62 -1.18 -0.71 -0.05 -3.65

6 1.03 -41.74 -2.96 -5.45 -5.31 2.74 -0.71 -1.41 -8.64 3.09 -0.19 -0.42 -0.05 -3.22

7 1.40 2.43 0.32 -3.16 -3.45 -0.47 -0.42 0.62 -2.38 2.01 -0.32 0.02 -0.04 -0.14

8 0.28 6.95 -55.62 -0.53 0.05 -0.20 -0.57 0.54 0.69 -2.31 0.81 -0.93 -0.04 -2.61

9 0.91 -15.46 -17.59 -1.00 -5.86 1.73 -0.87 0.35 21.18 1.66 -0.08 -0.27 -0.06 -4.25

10 -1.26 -0.62 -1.98 1.29 1.79 1.17 -0.67 -0.03 18.53 -1.68 -1.20 -0.62 -0.04 5.72 

11 -0.87 13.95 -13.54 -3.23 -3.59 -1.11 -0.72 -0.30 20.04 0.08 -1.16 -0.45 -0.05 -3.90

12 -0.31 -59.91 14.82 -5.72 -7.70 -2.92 0.17 -0.02 -16.73 -0.39 -0.20 -0.08 -0.05 -3.87

13 -1.30 -11.76 12.14 -0.86 -8.53 -4.94 -0.44 1.29 -1.52 -1.25 1.67 -0.75 -0.04 -2.23

14 -1.18 -83.51 -8.72 -2.40 -5.35 -0.41 -0.47 -1.42 3.36 -0.18 1.76 0.05 -0.04 -2.93

15 5.22 -26.80 -1.71 3.59 1.96 -0.53 -0.37 -0.04 -7.21 2.81 0.54 -0.59 -0.03 0.28 

16 -0.11 26.00 -13.00 1.67 4.84 1.78 -0.10 -0.11 -13.37 -0.75 3.31 1.49 -0.02 3.72 

17 3.05 32.00 -18.69 0.80 7.83 -2.62 0.07 3.93 5.64 -0.45 1.15 1.49 -0.02 0.86 

18 -3.01 -18.90 38.17 2.27 3.50 6.11 0.27 0.08 6.98 -1.03 -2.02 -0.60 -0.01 -0.66

19 3.69 35.10 1.43 -1.09 -6.76 -4.83 0.14 -2.09 -2.12 -0.34 -0.91 -0.52 -0.02 1.45 

20 -5.65 -27.70 -26.81 -1.12 -3.66 0.78 0.20 -1.55 2.20 -0.07 -0.89 -0.80 -0.01 -4.07

21 3.82 34.28 5.32 1.90 9.80 1.60 -0.67 0.24 -6.47 -1.58 -0.15 2.22 -0.05 -2.04

22 -1.06 -17.15 51.34 6.04 13.13 4.06 -0.71 -1.16 -9.03 3.19 -1.19 1.45 -0.05 3.49 

23 0.98 29.58 4.36 -2.79 11.76 8.23 1.28 -0.11 -3.27 -1.80 0.82 0.40 -0.05 2.84 

24 -3.33 23.10 -5.27 4.10 1.97 -3.33 0.17 0.38 16.36 0.78 0.86 -0.30 -0.06 3.57 

25 3.35 8.98 -9.33 -1.03 2.37 -1.58 -0.58 2.28 3.31 1.55 -1.20 -0.77 -0.04 -2.51

26 1.48 -0.71 -4.79 -4.57 -2.46 -0.97 0.40 -0.02 -2.13 1.38 -0.24 -0.62 0.96 -0.39

27 1.52 -18.46 28.86 -1.11 -1.91 -3.34 0.58 -0.32 -10.76 3.95 0.72 1.00 -0.04 2.24 

28 -0.85 8.85 7.14 -1.45 -4.24 2.02 -0.35 -1.01 7.74 0.19 -0.30 -0.16 -0.03 2.93 

Mean 0.00 0.07 0.05 0.00 -0.01 -0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 -0.01

SDD 2.48 34.21 20.48 3.50 6.03 3.04 0.72 1.24 11.84 1.85 1.22 0.83 0.19 3.42 

 
Training and verifying the model using Autoscope data:  After training the VCD model 
developed from FHWA data, the aggregated X1 and X2 values were replaced with actual 
Autoscope X-values.  The purpose of verification was to evaluate the statistical properties of the 
generated data and to compare those properties with similar properties of the input data.  To 
verify and quantify the accuracy of the VCD model, three datasets were randomly selected for 
testing purposes, which were excluded from the 28 datasets.  The model was first trained with 25 
datasets.  Table 3-8 shows the compiled 25 sets of both FHWA and Autoscope data.  The 
calculated mean number of cars and the standard deviation for each class (designated by each 
column) is shown in the last two rows.  The eight-step procedure discussed above was repeated 
and the VCD model generated a new series of 25 datasets.   
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Table 3-8.  Compilation of FHWA data and Autoscope data (25 datasets) 
 

S. No Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 X1 X2 

1 7 545 122 16 26 3 3 3 89 1 1 1 0 7 696 193 

2 8 680 125 5 28 8 1 1 119 2 3 1 0 19 743 200 

3 4 672 120 12 21 6 1 1 128 0 0 0 0 11 700 195 

4 6 642 135 5 15 4 1 3 128 0 0 0 0 5 764 182 

5 9 694 144 2 21 9 0 1 119 6 1 0 0 7 848 211 

6 11 737 148 2 18 5 0 2 99 4 1 1 0 8 891 161 

7 9 594 69 5 21 5 0 2 106 0 2 0 0 5 724 161 

8 7 676 136 8 26 7 0 2 137 1 0 0 0 15 798 191 

9 7 713 128 4 22 5 0 2 146 3 0 0 0 6 811 206 

10 7 752 173 3 22 4 1 3 126 3 1 0 0 8 905 244 

11 8 785 169 5 15 1 0 3 109 1 3 0 0 7 944 181 

12 8 585 129 3 16 5 0 0 107 2 3 1 0 5 816 162 

13 11 1299 216 8 33 9 0 2 102 1 5 2 0 16 1454 214 

14 15 1471 236 7 37 5 0 6 119 1 3 2 0 14 1638 218 

15 10 1583 318 8 33 14 0 2 115 0 0 0 0 13 1824 216 

16 16 1550 268 5 23 3 0 0 111 1 1 0 0 15 1721 221 

17 7 1388 225 4 23 8 0 0 103 1 1 0 0 8 1634 193 

18 12 603 127 8 32 7 0 2 106 1 1 3 0 6 692 174 

19 7 664 190 13 38 10 0 1 113 6 0 2 0 13 798 198 

20 9 671 137 4 36 14 2 2 117 1 2 1 0 12 757 193 

21 4 707 133 12 29 3 1 3 150 4 2 0 0 14 781 220 

22 12 666 126 5 25 4 0 4 115 4 0 0 0 6 789 177 

23 10 719 140 2 22 5 1 2 116 4 1 0 1 9 847 192 

24 11 674 170 4 19 2 1 1 90 6 2 2 0 10 847 158 

25 9 673 144 3 15 7 0 0 101 2 1 1 0 10 829 142 

Mean 8.96 829.72 161.12 6.12 24.64 6.12 0.48 1.92 114.84 2.20 1.36 0.68 0.04 9.96 970.04 192.12

SD 2.91 328.36 54.50 3.73 7.02 3.28 0.77 1.38 15.18 1.94 1.29 0.90 0.20 4.00 358.97 24.14

 
The generated data sets, calculated means, and standard deviations for each class are shown in 
Table 3-9.   
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Table 3-9.  Output of VCD model (25 datasets) 
 

S.No Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 

1 7.522 588.800 124.820 6.786 24.214 5.585 0.791 2.066 120.260 2.748 1.149 0.630 0.050 9.321

2 7.446 636.330 132.460 7.041 25.100 5.768 0.818 2.155 122.430 2.682 1.152 0.552 0.054 9.803

3 7.455 594.220 125.570 6.868 24.504 5.660 0.808 2.100 121.150 2.732 1.155 0.599 0.052 9.461

4 8.286 638.840 131.090 5.986 22.881 5.623 0.592 1.819 114.300 2.497 1.231 0.726 0.049 8.832

5 7.597 738.670 148.760 7.377 26.882 6.173 0.815 2.339 125.550 2.620 1.181 0.463 0.053 10.720

6 9.666 732.690 144.320 4.770 20.570 5.670 0.237 1.340 102.640 2.039 1.414 0.977 0.034 8.044

7 8.847 585.370 121.610 5.105 20.180 5.288 0.419 1.433 105.630 2.341 1.294 0.938 0.044 7.593

8 8.141 677.070 137.990 6.402 24.098 5.766 0.655 1.973 117.640 2.522 1.220 0.643 0.045 9.486

9 7.578 701.540 142.860 7.180 26.134 6.045 0.806 2.259 123.880 2.626 1.198 0.506 0.049 10.381

10 6.735 817.870 163.500 8.889 31.114 6.535 1.112 2.982 138.770 2.835 1.119 0.155 0.061 12.741

11 9.273 797.050 155.170 5.560 23.111 5.934 0.380 1.715 110.560 2.149 1.372 0.776 0.039 9.245

12 9.213 667.360 134.040 4.924 20.461 5.514 0.320 1.394 104.550 2.195 1.342 0.935 0.040 7.838

13 10.691 1275.800 230.830 6.154 28.325 7.244 0.177 2.103 115.350 1.522 1.633 0.568 0.023 12.443

14 11.500 1441.800 256.310 6.017 29.216 7.560 0.026 2.092 113.590 1.195 1.769 0.575 0.013 13.121

15 12.550 1603.400 280.530 5.465 29.336 7.907 -0.197 1.950 108.960 0.862 1.940 0.641 0.006 13.489

16 11.800 1517.800 267.570 5.985 29.817 7.805 -0.040 2.101 113.540 1.076 1.828 0.560 0.012 13.513

17 12.407 1416.600 250.000 4.750 26.111 7.344 -0.234 1.622 102.680 0.963 1.874 0.811 0.011 11.694

18 8.093 568.740 120.050 5.819 21.694 5.396 0.584 1.697 112.430 2.527 1.220 0.779 0.043 8.262

19 7.840 683.510 139.030 6.741 24.950 5.851 0.735 2.129 120.800 2.547 1.221 0.572 0.050 9.849

20 7.841 642.690 133.070 6.648 24.339 5.714 0.730 2.040 119.180 2.612 1.193 0.632 0.054 9.524

21 6.998 687.670 141.890 7.961 27.939 6.098 0.993 2.570 130.510 2.839 1.125 0.386 0.058 11.080

22 8.591 656.670 133.760 5.685 22.291 5.616 0.514 1.710 111.630 2.401 1.291 0.787 0.043 8.656

23 8.329 720.780 144.510 6.361 24.353 5.904 0.623 1.989 116.970 2.431 1.276 0.649 0.047 9.627

24 9.524 690.930 137.310 4.646 19.906 5.475 0.237 1.311 102.380 2.112 1.394 0.964 0.039 7.657

25 10.022 661.510 131.600 3.856 17.895 5.304 0.106 1.007 95.617 1.936 1.467 1.132 0.034 6.837

Mean 8.958 829.748 161.146 6.119 24.617 6.111 0.480 1.916 114.840 2.200 1.362 0.678 0.040 9.969

SD 1.690 326.354 50.476 1.135 3.464 0.803 0.367 0.428 9.775 0.607 0.250 0.212 0.016 1.941

 
The differences between the actual and generated series of datasets are shown in Table 3-10.  
The values in this table indicate the number of cars in each class that were under-or-over 
estimated by the VCD model using only Autoscope data, when compared to the actual count 
obtained by the FHWA axle counters.  Although the cumulative relation did not strictly hold 
true, the model produced 25 values for each class whose average was approximately zero.  The 
last row of Table 3-10 indicates the standard deviation values of the differences (SDD).  If the 
means of the differences (second to last row in Table 3-10) are non-zero whole numbers, then the 
differences are considered to be significant, indicating either inapplicability of the model, 
programming errors, or both.  This was not the case.  
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Table 3-10.  Summary of differences between FHWA data and Autoscope data (25 datasets) 
 

 
 
 
 
 
 
 
 
 
 
 
 

Results 
 
To test the VCD model performance, three datasets not included in training the model were run 
through the VCD model.  The first Autoscope dataset generated a set of 14 FHWA values, which 
were compared with the actual set of 14 FHWA values to determine the accuracy of the 
generated values.  To report the accuracy of the VCD model output, confidence intervals were 
estimated.  For the purpose of research, 95% and 99% confidence intervals were estimated from 
the following expressions: 
 
95% confidence Interval:  mean value from VCD model ± 1.96 × (SDD)………………(3.6) 
 
99% confidence Interval:  mean value from VCD model ± 2.575 × (SDD)……………..(3.7) 
 
SDDs are the conditioned standard deviation values obtained for each class in Table 3-10.  This 
process was employed on all three datasets and a summary of the confidence intervals for these 
sets is tabulated in Tables 3-11, 3-12, and 3-13.  The second and third columns in these tables 
represent the actual FHWA data and VCD model generated data, respectively.  Lower and upper 
95% confidence limit values are shown in fourth and fifth columns, followed by 99% confidence 
limit values in sixth and seventh column.  As is expected, the three sets that the 95% confidence 

S.No Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 
1 -0.522 -43.800 -2.820 9.214 1.786 -2.585 2.209 0.934 -31.260 -1.748 -0.149 0.370 -0.050 -2.321
2 0.554 43.670 -7.460 -2.041 2.900 2.232 0.182 -1.155 -3.430 -0.682 1.848 0.448 -0.054 9.197
3 -3.455 77.780 -5.570 5.132 -3.504 0.340 0.192 -1.100 6.850 -2.732 -1.155 -0.599 -0.052 1.539
4 -2.286 3.160 3.910 -0.986 -7.881 -1.623 0.408 1.181 13.700 -2.497 -1.231 -0.726 -0.049 -3.832
5 1.403 -44.670 -4.760 -5.377 -5.882 2.827 -0.815 -1.339 -6.550 3.380 -0.181 -0.463 -0.053 -3.720
6 1.334 4.310 3.680 -2.770 -2.570 -0.670 -0.237 0.660 -3.640 1.961 -0.414 0.023 -0.034 -0.044
7 0.153 8.630 -52.610 -0.105 0.820 -0.288 -0.419 0.567 0.370 -2.341 0.706 -0.938 -0.044 -2.593
8 -1.141 -1.070 -1.990 1.598 1.902 1.234 -0.655 0.027 19.360 -1.522 -1.220 -0.643 -0.045 5.514
9 -0.578 11.460 -14.860 -3.180 -4.134 -1.045 -0.806 -0.259 22.120 0.374 -1.198 -0.506 -0.049 -4.381

10 0.265 -65.870 9.500 -5.889 -9.114 -2.535 -0.112 0.018 -12.770 0.165 -0.119 -0.155 -0.061 -4.741
11 -1.273 -12.050 13.830 -0.560 -8.111 -4.934 -0.380 1.285 -1.560 -1.149 1.628 -0.776 -0.039 -2.245
12 -1.213 -82.360 -5.040 -1.924 -4.461 -0.514 -0.320 -1.394 2.450 -0.195 1.659 0.065 -0.040 -2.838
13 0.309 23.200 -14.830 1.846 4.675 1.756 -0.177 -0.103 -13.350 -0.522 3.367 1.432 -0.023 3.557
14 3.500 29.200 -20.310 0.983 7.784 -2.560 -0.026 3.908 5.410 -0.195 1.232 1.425 -0.013 0.879
15 -2.550 -20.400 37.470 2.535 3.664 6.093 0.197 0.050 6.040 -0.862 -1.940 -0.641 -0.006 -0.489
16 4.200 32.200 0.430 -0.985 -6.817 -4.805 0.040 -2.101 -2.540 -0.076 -0.828 -0.560 -0.012 1.487
17 -5.407 -28.600 -25.000 -0.750 -3.111 0.656 0.234 -1.622 0.320 0.037 -0.874 -0.811 -0.011 -3.694
18 3.907 34.260 6.950 2.181 10.306 1.605 -0.584 0.303 -6.430 -1.527 -0.220 2.221 -0.043 -2.262
19 -0.840 -19.510 50.970 6.259 13.050 4.149 -0.735 -1.129 -7.800 3.453 -1.221 1.428 -0.050 3.151
20 1.159 28.310 3.930 -2.648 11.661 8.286 1.270 -0.040 -2.180 -1.612 0.807 0.368 -0.054 2.476
21 -2.998 19.330 -8.890 4.040 1.061 -3.098 0.007 0.430 19.490 1.161 0.875 -0.386 -0.058 2.920
22 3.409 9.330 -7.760 -0.685 2.709 -1.616 -0.514 2.290 3.370 1.599 -1.291 -0.787 -0.043 -2.656
23 1.671 -1.780 -4.510 -4.361 -2.353 -0.904 0.377 0.011 -0.970 1.569 -0.276 -0.649 0.953 -0.627
24 1.476 -16.930 32.690 -0.646 -0.906 -3.475 0.763 -0.311 -12.380 3.888 0.606 1.036 -0.039 2.343
25 -1.022 11.490 12.400 -0.856 -2.895 1.696 -0.106 -1.007 5.383 0.064 -0.467 -0.132 -0.034 3.163

Mean 0.002 -0.028 -0.026 0.001 0.023 0.009 0.000 0.004 0.000 0.000 -0.002 0.002 0.000 -0.009
SDD 2.380 35.516 20.566 3.562 6.141 3.184 0.676 1.311 11.632 1.840 1.269 0.877 0.199 3.505
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interval obtained using the VCD model output included 95% of actual FHWA classes.  Outliers 
are in bold.  The confidence interval obtained with 99% confidence contained all the actual 
FHWA classes. 
 

Table 3-11.  Testing dataset 1, 95% and 99% confidence interval for the VCD model output 
 

 Actual VCD model 95% Confidence Interval 
 

99% Confidence Interval 
 

S.No 
(1) 

FHWA values 
(2) 

Mean Output 
(3) 

Lower C.L 
(4) 

Upper C.L 
(5) 

Lower C.L 
(6) 

Upper C.L 
(7) 

1 7 8.46 3.79 13.12 2.33 14.59 

2 560 541.50 471.89 611.11 450.02 632.98 

3 146 115.28 74.97 155.59 62.31 168.25 

4 9 5.30 -1.69 12.28 -3.88 14.47 

5 27 20.29 8.26 32.33 4.48 36.11 

6 4 5.27 -0.97 11.51 -2.93 13.47 

7 2 0.50 -0.83 1.82 -1.24 2.24 

8 2 1.48 -1.09 4.05 -1.90 4.86 

9 105 107.70 84.90 130.50 77.74 137.66 

10 2 2.49 -1.12 6.09 -2.25 7.23 

11 0 1.22 -1.27 3.70 -2.05 4.49 

12 1 0.89 -0.83 2.61 -1.37 3.15 

13 0 0.04 -0.35 0.43 -0.47 0.56 

14 7 7.56 0.69 14.43 -1.47 16.59 
 

Table 3-12.  Testing dataset 2, 95% and 99% confidence interval for the VCD model output 
 

 Actual VCD model 95% Confidence Interval 
 

99% Confidence Interval 
 

S.No 
(1) 

FHWA values 
(2) 

Mean Output
(3) 

Lower C.L 
(4) 

Upper C.L 
(5) 

Lower C.L 
(6) 

Upper C.L 
(7) 

1 8 6.72 2.056 11.39 0.59 12.85 

2 624 643.44 573.830 713.05 551.96 734.92 

3 114 134.87 94.561 175.18 81.90 187.84 

4 7 8.04 1.060 15.02 -1.13 17.22 

5 21 27.73 15.693 39.77 11.91 43.55 

6 8 5.96 -0.281 12.20 -2.24 14.16 

7 0 1.03 -0.291 2.36 -0.71 2.78 

8 3 2.59 0.017 5.16 -0.79 5.96 

9 156 131.45 108.652 154.25 101.49 161.41 

10 5 2.95 -0.656 6.56 -1.79 7.69 

11 1 1.09 -1.398 3.58 -2.18 4.36 

12 0 0.36 -1.361 2.08 -1.90 2.62 

13 0 0.06 -0.326 0.45 -0.45 0.58 

14 6 10.97 4.098 17.84 1.94 20.00 
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Table 3-13.  Testing dataset 3, 95% and 99% confidence interval for the VCD model output 
 

 Actual VCD model 95% Confidence Interval 
 

99% Confidence Interval 
 

S.No 
(1) 

FHWA values 
(2) 

Mean Output 
(3) 

Lower C.L 
(4) 

Upper C.L 
(5) 

Lower C.L 
(6) 

Upper C.L 
(7) 

1 15 9.49 4.83 14.16 3.36 15.62 

2 950 978.49 908.88 1048.10 887.01 1069.97 

3 182 184.31 144.00 224.62 131.34 237.28 

4 10 6.28 -0.70 13.26 -2.90 15.45 

5 28 26.17 14.13 38.20 10.35 41.99 

6 6 6.49 0.25 12.73 -1.71 14.69 

7 0 0.41 -0.91 1.74 -1.33 2.15 

8 2 2.02 -0.55 4.58 -1.36 5.39 

9 109 115.45 92.65 138.25 85.49 145.41 

10 5 2.01 -1.60 5.62 -2.73 6.75 

11 2 1.45 -1.03 3.94 -1.82 4.72 

12 0 0.64 -1.08 2.36 -1.62 2.90 

13 0 0.04 -0.35 0.43 -0.48 0.55 

14 11 10.89 4.02 17.75 1.86 19.91 

 
 
Conclusions and Recommendations 
 
During the Vehicle Classification Disaggregation (VCD) model development, training, and 
validation, video and axle data were employed.  With a trained VCD model and using only 
Autoscope data, 10,000 runs were made to produce an output distribution for the 14 FHWA 
classes.  A summary of FHWA axle counter data and Autoscope data is shown in Table 3-5, and 
the results of the disaggregation model are presented in Table 3-6.  A comparison was performed 
on these two tables and the average deviation of the difference between the FHWA axle count 
data and the VCD model output is provided in Table 3-7.  It can be seen from the tables that for 
most of the classes, the generated values maintained statistical properties similar to the actual 
data, and the mean of the differences is close to zero indicating a negligible average difference 
between the actual and VCD model output data.   
 
The VCD model was verified using three datasets.  A comparison was performed between the 
actual data and the VCD generated classes for the three datasets.  Confidence intervals at 95% 
and 99% were calculated for the generated values, and are presented in Tables 3-11, 3-12, and 3-
13. 
 
Based on a review of various methodologies used for vehicle classification, and the findings 
from the vehicle disaggregation analyses, the following conclusions and recommendations are 
outlined for using video technology for compositional traffic counts. 
 
• Initial installation costs of employing video for compositional traffic data collection is 

approximately $11,000.    
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• Video is inexpensive, portable, and can be installed on a bridge railing or on a side pole in 
approximately 15 minutes without disrupting traffic.  Maintenance costs of video equipment 
are low.  

• Any number of video “virtual” loops can be placed on the target roadway.  This translates 
into less cost when compared to inductive loop detectors.   

• Video technology offers simple monitoring of multilane freeways that produces no disruption 
of traffic, and better safety for data collection staff. 

• Autoscope was inefficient in grouping long vehicles.  One possible solution would be to 
mount the camera higher (more than 30 feet above the target roadway). 

• The current VCD model produces accurate results at the site where it was trained.   
• To further analyze the VCD model, the performance on weekends, peak and off-peak 

periods, and holidays must be evaluated.  This will allow the development of specific models 
for different time periods. 

• Further, to analyze the applicability of VCD model, its performance must be evaluated at 
different locations. 
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Section 4 
15th Street Corridor Modeling 

 
 
Introduction 
 
Video technology can be used to obtain information about traffic flow.  Parameters such as 
volume, speed, headway, and queue length can be determined through careful analysis of 
recorded video.  Using video cameras installed and operated by the City of Tuscaloosa and 
portable University of Alabama video units, video recording was performed on intersections 
along the 15th Street corridor in Tuscaloosa.  Traffic flow parameters were determined from the 
video recording, and were used to develop a traffic flow model using an industrial engineering 
simulation software package called ARENA developed by Rockwell Software Inc. (ARENA 
User Manual, 1999).   
 
Output volume results from the new ARENA model were compared to the actual field data, and 
ARENA delay values were compared with Institute of Transportation Engineers (ITE) 
intersection field delay values, Highway Capacity Manual (HCM) 1994, and Highway Capacity 
Software (HCS) 2000 calculations.  Input parameters for the ARENA model and the other 
methodologies were obtained from video data.  Information on traffic flow, signalization, and 
intersection geometry were provided by the Tuscaloosa Department of Transportation (TDOT).   
 
The objective of this task was to determine if video could be used to collect the required traffic 
information to calculate volume and delay by different methodologies, one of which, the 
ARENA model, was developed during this work.  Although multiple methods were compared, 
two methods 1) the new ARENA simulation model based on the arrival distribution, and 2) the 
ITE intersection formula, were compared in detail.   
 
 
Background 
 
For this work it was assumed that traffic simulation is analogous to manufacturing.  The 
manufacturing process involves the arrival of raw material at a machine, processing by the 
machine, and departure as a finished product.  A similar methodology was employed to calculate 
the efficiency of signalized intersections using ARENA.  In this process, a vehicle arrives at an 
intersection, experiences delay due to signal operations, and departs from the intersection as a 
turn movement or through movement.   
 
Existing intersection traffic models use traffic volumes as input, and do not consider the actual 
arrival distribution of traffic at an intersection.  Two of these models, HCM 1994 and HCS 2000 
were investigated.  Although these methods consider arrival patterns, the actual arrival 
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distributions are not included as part of the software.  This was not as desirable as software that 
allowed designation of the distributions.  
 
ARENA was selected for simulating signalized intersections based on the following factors:  
 
1) ARENA uses data such as arrival distributions, turn volumes, and signalization phase plan to 

predict volume and intersection stopped delay associated with a signalized intersection,  
2) ARENA provides visualization capabilities, and  
3) the output format can be customized to obtain parameters such as volume, queue length, 

stopped delay, and process delay.  
 
 
Methodology 
 
Introduction 
 
Video cameras were used to collect field data for this study.  A simulation model was developed 
for one intersection and applied to three additional intersections along the same corridor.  The 
research approach employed in this work is shown in Figure 4-1.  Column 1 in Figure 4-1 shows 
the initial step, video data collection.  Input parameters for the ARENA model and ITE method 
were identified and collected as part of this step.  Video technology was used to collect traffic 
data during morning and evening peak hours.     
 

 
 

 
 
 

Figure 4-1.  Schematic representation of the study approach 
 
As shown in column 2 of Figure 4-1, the recorded videotapes were cleaned and analyzed to 
determine the input parameters for the methods.  Column 3 of Figure 4-1 shows the computation 
portion of this work, which is divided into two parts: ARENA simulation modeling and 
operational analysis.  Finally, as shown in column 4 of Figure 4-1, ARENA volume and delay 
results were analyzed and validated; specifically against the field values, ITE method, HCM 
1994 and HCS 2000 procedures.   
 

Column 1            Column 2                       Column 3             Column 4 
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Video Data Collection 
 
The traffic data utilized for this study were obtained at four intersections on 15th Street in 
Tuscaloosa, Alabama.  The 15th street corridor is considered to be one of the busiest corridors in 
the City, with several intersections experiencing saturation flow during the peak hours of the day, 
i.e., the morning 7:00 to 9:00 AM period and the evening 4:00 to 6:00 PM period.  The following 
intersections were used for analysis in this research: 
 

1. 15th Street and McFarland Boulevard  
2. 15th Street and 6th Avenue East 
3. 15th Street and Hackberry Lane 
4. 15th Street and 10th Avenue 

 
As shown in Figure 4-2, these intersections are along 15th Street between US 82 and Interstate 
359.  These intersections were chosen because of the heavy traffic volumes, the associated high 
delay values, and the location of permanent video cameras owned by TDOT. 
 
A group of six students collected morning peak data from 7:00 to 9:00 and evening peak data 
from 4:00 to 6:00 during weekdays.  The data collection process was spread over a two-month 
period with the amount of data varying from one day to seven days depending on the approach.  
Video cameras were used to record traffic movements at these intersections.  TDOT provided 
assistance in the video data collection.   
 

 
 

Figure 4-2.  Map of the 15th Street corridor 
 
 

4 3
2 1 
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ARENA Input Parameters:  Various traffic parameters were measured or calculated based on 
the input requirements for the simulation model and the operational analysis calculations.  The 
following parameters were identified as input for the ARENA simulation.   
 

1. arrival distributions and time headways (time between two consecutive vehicles in a 
particular lane), 

2. turn volume percentages, 
3. signalization data, and 
4. number of lanes and signals. 

 
ITE Method Input Parameters:  Input data for the ITE method, which involves the calculation 
of delay based on the number of stopped vehicles and the volume in a given time period, are as 
follows (Traffic Engineering Handbook, 1994): 
 

1. lane volumes for each approach, calculated from the video data,    
2. stopped vehicle-volume data, i.e., the total number of stopped vehicles counted every 15 

seconds in a given period of time, and 
3. flow rate for each lane/lane group, i.e., the total traffic volume in a lane/lane group in a 

given time. 
 
A total of 240 hours of videotape were collected during this study.  Cleaning of the videotape to 
collect the required parameters took approximately 360 hours.  Although this was a time 
consuming process, the data produced was very accurate because any tape could be viewed any 
number of times to verify the data.   
 
ARENA Model Development 
 
ARENA uses modules to define different processes.  There are two types of ARENA modules: 
1) flowchart modules and 2) data modules.  Flowchart modules are connected to form logical 
relationships dealing with processing a vehicle through an intersection.  Data modules, which 
can be edited by a spreadsheet (ARENA User Manual, 1999), are connected to flowchart 
modules and control the behavior of those modules, i.e. actual volumes of vehicles arriving or 
signal timings.  ARENA employs a model window that consists of two regions: 1) the model 
workspace that contains all the model graphics, including the flowchart and animation, and 2) the 
spreadsheet view that displays the model data.   
 
The development of the ARENA simulation model is based on: 
 

1. arrivals, 
2. turn movements, yield on green (YOG) left-turns, and right turns on red (RTORs), and 
3. intersection operations. 

 
Actual arrival information was employed to calculate arrival distributions that were used in 
“Arrive” blocks in the ARENA model.  Peak hour field data were collected in eight 15-minute 
intervals.  These eight data sets were used to develop Poisson distributions for arrivals.  The 
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method employed in determining Poisson distributions can be found in research done by 
Pagadala (2001).  
 
Vehicles arriving at an intersection must turn or go through an intersection.  An ARENA 
“Chance” block was utilized to separate YOGs and to delineate RTOR percentages.  An ARENA 
“Inspect” block was used to separate right-turn vehicles from through vehicles in the case of a 
shared right turn lane.   
 
Finally, each “Arrive” block was assigned a server that processes vehicles.  In this model, the 
server represents the signal for that particular lane.  Signal green time and red time are achieved 
by creating active and inactive phases of the server with the help of logic blocks. 
 
Figure 4-3 illustrates the building units of the ARENA intersection simulation model.  Traffic is 
generated using the ARENA “Arrive” block using Poisson distributions.  Each vehicle goes into 
the server, which is analogous to the traffic signal at the intersection.  The vehicle is processed, 
i.e., the vehicle remains in the queue until the server becomes active (signal turns green) and then 
it is released to the ARENA “Depart” block that counts the number of departures.  The servers 
follow the actual signal phasing at an intersection.  By combining a series of arrive-server-depart 
building units along with chance and inspection blocks representing turns, an entire intersection 
can be modeled.   
 

 
 

Figure 4-3.  Basic intersection process 
 

Figure 4-4 shows a signalized intersection simulation model developed using ARENA.  
Additional details on ARENA model development for intersection modeling can be found in 
Pagadala (2001). 
 
Operational Analysis 
 
In addition to developing an ARENA model, an operational analysis was performed based on 
ITE procedures published in the Traffic Engineering Handbook.  This procedure is 
recommended by the Highway Capacity Manual.  Video data was analyzed to evaluate the field 
stopped delay value.   
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Figure 4-4.  ARENA simulation model for a signalized intersection 
 
 
Equation 4.1 gives the stopped delay value. 
 

d = Vs × t/V  ………………………………………..(4.1) 
 
where d is the stopped delay, t is delay analysis interval, Vs is number of stopped vehicles in the 
given time, and V is total volume at the approach in the given time.  The underlying assumption 
in this method is that a stopped vehicle during any interval stops for the entire interval length.  
Hence, the calculation involves t, which is the analysis interval.  The methodology is based on 
stopped vehicle counts at intervals of 10 to 20 seconds.  Fifteen seconds is taken as the average 
count interval (Guidebook for Transportation Corridor Studies).  Delay was initially calculated 
for all lanes and lane groups, and then combined to give the approach delay (equation 4.2).  The 
intersection delay was calculated based on the approach delay (equation 4.3).    
 

  dA = Σ (di × vi)/ Σ (vi)  ……….………………………..(4.2) 
 

dI = Σ (dA × vA) / Σ (vA) …………..…………………..(4.3) 
 
where dA and dI are approach delay and intersection delay, di is the lane group delay, vi is the 
flow rate in the lane group, vA is approach flow rate. 
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Results and Discussion 
 
This task employed video data to develop a new traffic simulation model using ARENA, an 
industrial engineering software package.  The model was developed for one intersection, 6th 
Avenue East and 15th Street in Tuscaloosa, Alabama, and results from the model were compared 
against field volumes obtained manually and delay values by the ITE method at that intersection 
and three other intersections: McFarland Boulevard, Hackberry Lane, and 10th Avenue.  Apart 
from comparison of delay results, this task also performed a comparative study of level of 
service (LOS) results based on the delay values obtained by ITE, HCM 1994, and HCS 2000 
methods.   
 
ARENA Simulation Model Results 
 
To begin the evaluation of the ARENA model, it was first necessary to determine the number of 
replications required to produce consistent results.  Because the ARENA model is based on 
probability distributions, each run produces different results.  It was found that twenty 
replications of two-hour runs were required.  The corresponding half width of the ARENA 
results (average delay value) was found to be within two percent of the mean.  Hence, the 
number of replications was enough for analysis of the model.  Volume and delay obtained from 
the model were compared with field values.  In some cases, field data was unavailable for certain 
approaches because of improper video recording, glare due to excess light, or poor lighting.  In 
those cases the model was compared to those approaches for which there was available field 
data. 
 
The ARENA volume results for 6th Avenue East and 15th Street, during the AM peak are 
compared to the field data in Table 4-1.  Column one lists ARENA volume, field volume, and 
the deviation of ARENA from the field data.  Four traffic movements are displayed: left-turn 
lane (left) and the through lanes (East 1, East 2, and East 3).  Columns two through nine show 
volume data and deviation of the two methods for eight 15-minute intervals.  These intervals are 
additive and show how the ARENA model performs for total run times between 15 and 120 
minutes. 
 
Table 4-1 shows that the ARENA model yields values within 14 to 20 percent (column nine) of 
actual field volumes when the total two-hour volumes are considered.  Shorter time periods 
typically produce less accurate results.  These discrepancies may be attributed to the fact that the 
actual vehicle arrivals in the field may not be Poisson distributed, which is an assumption of the 
model, but rather arrive in platoons or groups because of the signal progression.    
 
The ARENA model was then used to simulate the three remaining signalized intersections with 
similar conditions for both AM and PM peak hours.  Pagadala (2001) provides a detailed 
comparison of the ARENA model results and field values for the remaining intersections. 
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Table 4-1.  6th Avenue East and 15th Street AM peak East approach volume data 
 

Volume 
(1) 

15 min. 
(2) 

30 min. 
(3) 

45 min. 
(4) 

60 min. 
(5) 

75 min. 
(6) 

90 min. 
(7) 

105 min. 
(8) 

120 min. 
(9) 

Left 
ARENA 

 
10 21 32 43 55 66 77 89 

Field Volume - 12 21 35 56 67 81 103 

% Deviation - 75 52 23 2 1 5 14 

  
East 1 
ARENA 63 138 210 284 360 432 504 580 

Field Volume - 42 113 214 293 349 407 482 

% Deviation - 228 86 33 23 24 24 20 

  
East 2 
ARENA 63 137 209 281 355 429 505 575 

Field Volume - 49 118 210 283 353 425 498 

% Deviation - 179 77 34 25 21 19 15 

  
East 3 
ARENA 29 64 97 131 163 197 235 269 

Field Volume - 25 63 119 175 224 271 327 
% Deviation - 156 54 10 7 12 13 18 

 
Table 4-2 shows the summary of model and field results for 6th Avenue East and 15th Street for 
the AM peak.  This table illustrates typical intersection results, while the remaining three 
intersections in this study can be seen in Pagadala (2001). 

 
Table 4-2.  6th Avenue East and 15th Street AM peak volume and delay comparison 

 

Approach 
Lane/Lane Group 

ARENA 
Volume 

Field 
Volume 

Percentage 
Deviation 

ARENA 
Delay 
(sec) 

Field 
Delay 
(sec) 

Percentage 
Deviation 

(1) (2) (3) (4) (5) (6) (7) 
  
 EAST             
        Left 89 103 14 55.02 21.55 155 
        East 1 580 482 20 29.51 23.99 23 
        East 2 575 498 15 29.53 23.22 27 
        East 3 269 327 18 29.34 9.39 212 
   
  WEST             
        Left 114 95 20 53.88 36.97 46 
        West 1 488 434 12 29.2 19.25 52 
        West 2 516 456 13 29.46 19.73 49 
        West 3 251 281 11 29.28 19.06 54 
   
  NORTH             
 Left Through Right  135 146 8 53.56 32.05 67 
   
  SOUTH             
        Left  148 136 9 41.88 27.46 53 
        South 1 176 164 7 41.4 11.55 258 
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Column one of Table 4-2 shows the approach direction (bold) along with the lane or lane group.  
Column two provides volume data generated by the ARENA model, and the corresponding field 
volumes are in Column three.  Column four computes the amount of deviation of the ARENA 
volume from the field volume.  Columns five and six give ARENA delay and field delay values 
respectively.  The deviation of ARENA delay results from field delay values are computed in 
Column seven.  
 
Over the two-hour period, the ARENA model generates traffic volumes with an observed 
deviation of 7 to 20 percent as seen in Column four of Table 4-2.  ARENA was found to greatly 
over-predict intersection delay by 23 to 258 percent as shown in column seven of Table 4-2.  
This is shown graphically in Figure 4-5, which is a typical plot produced by plotting the 15-
minute interval delay values from ARENA and the field values for the left-turn lane of the 
eastbound approach.  This plot includes the delay values in seconds on the Y-axis and the eight 
15-minute intervals in the two-hour peak period on the X-axis.  Although the ARENA model 
generates a delay pattern that is similar to the field values, which is encouraging, the actual value 
produced by the two methods is quite different, up to 258 percent different.  The dissimilarity 
between the field plots and ARENA plots may be due to the fact that the field values were not 
following a true Poisson distribution, which was assumed in the ARENA model.   
 

 
 

Figure 4-5.  6th Avenue East AM peak model validation: east approach – left lane 
 
In addition, turn lanes or shared through-turn lanes performed worse (53 to 258 percent 
deviation) when compared to strictly through lanes (23 to 52 percent deviation).  This indicates 
that the ARENA model requires more refinement with respect to turn movements.   
 
Table 4-3 illustrates the LOS of the four intersections in this study in terms of average stopped 
delay.  Column one lists the intersection, while column two indicates the AM and PM peak 
hours.   
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Table 4-3.  LOS Table: A comparative study 
 

Intersection Peak 
Hour 

ITE Field 
(sec) 

ITE 
LOS 

HCM 1994 
(sec) LOS HCS 2000 

(sec) LOS ARENA  
(sec) LOS 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

15th Street and  

AM 19.99 C 28.17 D 41.60 E 33.08 D 

PM 18.72 C 28.18 D 43.20 E 33.00 D 6th Avenue East 

 

AM 29.38 D 33.00 D 71.80 F - - 

PM 25.14 D 150.63 F 125.30 F - - McFarland Blvd. 

 

AM 22.75 C 77.43 F 58.40 E 40.45 E 

PM 19.23 C 124.91 F 61.10 F 38.36 D Hackberry Lane 

 

AM 22.27 C 41.50 E 67.30 F - - 
10th Avenue 

PM 21.07 C 30.93 D 55.30 E 45.71 E 

 
Column three provides ITE delay values in seconds, and column four provides the corresponding 
LOS based on the HCM 1994.  Columns five and six show the HCM 1994 results, while 
columns seven and eight provides HCS 2000 results.  Column 9 shows the ARENA model 
results, while column ten provides the LOS associated with ARENA delay values. 
 
The ITE field delay values at all the four intersections correspond to LOS C and D, where C 
represents a good intersection performance and D represents a congested condition.  It should be 
noted that ITE field values were obtained from the volume of stopped vehicles in a particular 
interval of time, while the HCM 1994 and HCS 2000 methods considered delays observed 
during stopping, starting up, and red time at an intersection.  Hence, ITE field values always 
produce better LOS than these other methods.   
 
The ARENA model produced LOS (column nine) results that were one and two levels lower 
than the ITE field values, and between the HCM 1994 and HCS 2000 results.  This again 
indicates the need for additional model calibration and refinement.  Once the calibration of the 
model is improved, Table 4-3 can be used to study the change in LOS of a signalized intersection 
by varying the phase plan.  It is a future goal of this work that the LOS estimated by the ARENA 
model can be studied to evaluate potential improvements to signal timings.  
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Conclusions  
 
This study used conventional video units and TDOT’s traffic surveillance cameras to gather 
traffic data.  The data was used to develop a simulation model for signalized intersections using 
ARENA software.  The ARENA model was developed at one of four intersections and evaluated 
at all four intersections.  An existing intersection performance evaluation method, the ITE field 
delay estimation method, was used to perform operational analysis on the four intersections.  The 
results of this method were compared to the ARENA results.  Although ARENA is an industrial 
engineering simulation software, it showed encouraging but inaccurate results when used to 
simulate signalized intersections.  Further research is required to improve ARENA’s calibration, 
specifically improving turn lanes and stopped delay calculations.   
 
Conclusions and recommendations about video data collection for model development and 
analysis are presented here: 
 

• Data collection using video proved to be useful in obtaining information about traffic 
flow parameters such as volume, turn movements, headway, and delay. 

• Unlike manual field data collection, there is always a chance to double-check data that is 
collected using video technology, which is beneficial for model development.   

• Conventional video cameras are efficient for collecting traffic data that are lane-specific, 
such as left-only turn lanes and through lanes. 

• Surveillance cameras can be operated remotely and allow tilting and zooming of the view 
for traffic recording.  

• Video data collection and reduction processes involve a considerable amount of time (the 
data collection for this study encompassed a two-month period) and resources (several 
persons were required to handle the video cameras in the field and to collect vehicle 
arrival time data for estimating arrival distributions).  

• Errors can be introduced in video data collection from camera location, camera view, and 
parallax associated with simultaneous platooning in different lanes.  To minimize these 
problems, cameras should be located at high vantage points that provide a clear view of 
the intersection.    

• Data requirements for a project should be addressed and a comprehensive data collection 
scheme should be prepared for projects involving video.  This enables effective data 
collection.   

• ARENA modeling software has the tools required to model a signalized intersection.   
• Although the ARENA model developed in this work was not calibrated to a degree that 

allowed it to be employed in a real life signal-timing study, the results show potential for 
future model development.   
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Section 5 
Railroad-Grade Crossing Automated Video Enforcement Analysis 

 
 
Introduction 
 
There are 252,341 highway-rail grade crossings in America, of which 154,087 are public-at-
grade crossings.  These crossings can be dangerous when traffic laws are violated.  Continual 
police enforcement at all railroad-grade crossings is infeasible and cost prohibitive.  An 
alternative method of enforcement is automated enforcement.  The use of automated 
enforcement commonly involves video-based technology to photograph the license tag and 
driver during a violation.  Despite the fact that automated enforcement has expanded rapidly 
worldwide and in the United States, Alabama has yet to implement any such an enforcement 
program.  The state does not have legislation in place that would allow for the operation of an 
automated enforcement program.  However, as automated enforcement continues to grow, 
pressure will mount on the state government to investigate the implementation of automated 
enforcement technologies. 
 
The objective of this task was to investigate the use of video-based technology to study traffic 
behavior and possible violation enforcement at railroad-grade crossing in the State of Alabama.  
Safety measures at railroad-grade crossings were investigated and recommendations were made 
for the use of automated enforcement and advance warning of train arrival systems. 
 
 
Study Approach 
 
The objective of this task was accomplished by: 

1. Reviewing literature regarding accident trends and safety measures at railroad-grade 
crossings; 

2. Selecting sites, based on accident history and safety concern, for data collection; 
3. Video recording of selected sites; and 
4. Analyzing video data to report the type of violations that may lead to an accident. 

 
The scope of this task was to study warning time, frequency, and type of violations at railroad-
grade crossings.  Further research should be done to study the effect of crossing parameters such 
as sight distance, speed on approach lane, type of warning device, etc. all of which govern the 
safety at railroad-grade crossings. 
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Background 
 
According to 2001 railroad fatality data, the State of Alabama ranks 10th nationally in the 
number of fatal railroad-grade crossing crashes.  Alabama ranked 11th in 2000.  Table 5-1 shows 
fatality rankings by state for years 2000 and 2001.  This table lists the total number of fatalities, 
and is not normalized by population, number of grade crossings, or number of vehicle miles 
traveled. 
 
Train-vehicle collisions are considered to be more dangerous than vehicle-vehicle collisions.  
“Compared to a collision between two highway vehicles, a collision with a train is 11 times more 
likely to result in a fatality, and 5.5 times more likely to result in a disabling injury” (EPA, 
2000).  Train operations cause delays to motorists at railroad-grade crossings.  Collisions at 
grade crossings are a direct result of misjudgment, or traffic violations by motorists.  Research 
has shown that installing advance train detection systems coupled with visible, high profile 
variable message signs (VMS), and implementing law enforcement programs are effective in 
reducing delays, crossing violations, and fatalities at railroad grade crossings. 
 

Table 5-1.  Highway-railroad grade crossing fatalities and rankings: 2000-2001 
 

State 
Number of 
fatalities 

2000 
Rank State 

Number of 
fatalities 

2001 
Rank 

Texas 52 1 California 53 1 

Illinois 31 2 Texas 39 2 

Arkansas 27 3 Illinois 31 3 

California 27 3 Louisiana 22 4 

Indiana 23 4 Mississippi 22 4 

Missouri 17 5 Ohio 22 4 

Florida 15 6 Georgia 19 5 

Mississippi 15 6 Indiana 19 5 

Ohio 15 6 Iowa 16 6 

Wisconsin 15 6 Florida 14 7 

Louisiana 14 7 Michigan 11 8 

North Carolina 14 7 Kentucky 10 9 

Michigan 13 8 Tennessee 10 9 

Oklahoma 12 9 Wisconsin 10 9 

Idaho 11 10 Alabama 9 10 
Kansas 11 10 Arkansas 9 10 

Alabama 10 11 Minnesota 9 10 

Georgia 10 11 Oklahoma 9 10 

South Carolina 10 11 - - - 

 
 
Safety at railroad-grade crossings can be improved by carefully monitoring crossings.  Video 
technology can be used to record driver behavior at railroad-grade crossings, and to understand 
the effect of crossing parameters such as sight distance, speed limit on the approach lane, 
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warning time, and type of warning device.  Based on such studies, measures can be implemented 
to improve the safety at railroad-grade crossings. 
 
Warning time is considered to be one of the most important parameters that govern safety at 
railroad-grade crossings.  According to the Manual on Uniform Traffic Control Devices 
(MUTCD), there should be a minimum warning time of 20 seconds before a train approaches a 
crossing (MUTCD, 2001).  Sensors, which activate warning devices, are placed on the tracks at a 
specific distance from the crossing.  Therefore, a constant warning time at railroad-grade 
crossings is difficult because trains move at different speeds.  The distance, and therefore the 
time, is set for the fastest expected train.  When a slow moving train approaches warning times 
increase, which gives motorists a false concept of warning time.  As a result motorists try to beat 
the train and may end up in collisions.  Automated enforcement could be implemented to 
increase the safety by discouraging motorists from trying to beat the train. 
 
 
Literature Review 
 
The laws that define violations at railroad-grade crossing were examined.  A comprehensive 
review was performed on accident history and safety measures at railroad-grade crossings. 
 
Definition of Railroad-Grade Crossing Violation 
 
“Alabama prohibits motorists from driving through, around, or under any crossing gate or barrier 
while the gate or barrier is closed or in the process of being opened or closed.” (State Laws, 
2001) 
 
From the above law a motorist is said to commit a violation if he or she: 

1. Drives under the gates as they are descending; 
2. Drives through or around the gates when they are in horizontal position; or 
3. Drives under the gates as they are ascending. 

 
Any one of the above maneuvers can cause a train-vehicle collision.  Driving under the gates 
when they are descending is dangerous especially with fast moving trains when warning times 
are reduced.  Motorists’ misjudgment of train speeds is the most common reason for train-
vehicle collisions.  This typically occurs when motorists drive through or around the gates before 
a train approaches.  Other train-vehicle collisions occur when motorists cross tracks as the gates 
are ascending and do not notice a train coming in the opposite direction on a second track.   
  
Railroad-Grade Crossing Accident History and Safety Measures  
 
According to Federal Railroad Administration (FRA) statistics, someone is hit by a train every 
115 minutes in America.  Also, there are more than nine tractor truck-train collision per week, 
and there are many more near-hits than collisions.  Table 5-2 shows that the total number of 
collisions and fatalities in the nation were reduced over the past two decades, although the 
number of fatalities per collision has increased from 0.078 in 1981 to 0.130 in 2001.  Based on 
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these statistics, it could be concluded that the accidents that have been reduced are not as severe 
as the accidents that are still occurring (OLS, 2001).  There is no particular trend in the number 
of injuries per collision. 
   

Table 5-2.  National Highway-railroad grade crossing collisions and casualties: 1981-2001 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5-3 illustrates the number of collisions and fatalities at railroad crossings in Alabama for 
years 1998-2001.   
   

Table 5-3.  Alabama highway-railroad grade crossing collisions and fatalities: 1998-2001 
 

Year Collisions Fatalities Number of fatalities 
per collision 

2001 103 9 0.087 

2000 95 10 0.105 

1999 124 12 0.097 

1998 145 11 0.076 

 
As stated earlier, train-vehicle collisions are the direct result of violations of traffic laws by 
motorists at railroad crossings.  Safety measures like highway traffic signals, raised medians, and 
four-quadrant gates were designed to prevent violations at railroad-grade crossings.  Flashing red 
lights at railroad crossings may be replaced by highway traffic signals based on the assumption 
that drivers will comply with the traffic signals more often than flashing red lights.  While raised 

Year Collisions Fatalities Injuries
Number of 

fatalities per 
collision 

Number of 
injuries per 

collision 
2001 3,232 419 1,155 0.130 0.357 

2000 3,502 425 1,219 0.121 0.348 

1999 3,489 402 1,396 0.115 0.400 

1998 3,508 431 1,303 0.123 0.371 

1997 3,865 461 1,540 0.119 0.398 

1996 4,257 488 1,610 0.115 0.378 

1995 4,633 579 1,894 0.125 0.409 

1994 4,979 615 1,961 0.124 0.394 

1993 4,892 626 1,837 0.128 0.376 

1992 4,910 579 1,969 0.118 0.401 

1991 5,386 608 2,094 0.113 0.389 

1990 5,713 698 2,407 0.122 0.421 

1989 6,525 801 2,868 0.123 0.440 

1988 6,615 689 2,589 0.104 0.391 

1987 6,391 624 2,429 0.098 0.380 

1986 6,396 616 2,458 0.096 0.384 

1985 6,919 582 2,687 0.084 0.388 

1984 7,281 649 2,910 0.089 0.400 

1983 7,161 575 2,623 0.080 0.366 

1982 7,748 607 2,637 0.078 0.340 

1981 9,295 728 3,293 0.078 0.354 
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medians and four-quadrant gates prevent drive-around violations, they do not prevent violations 
that occur while the gates are ascending or descending (Fitzpatrick, et al. 1997). 
 
In Alabama, a traffic law violator can be ticketed only by a police officer.  There are many safety 
concerns that limit police enforcement of traffic laws at railroad-grade crossings; sometimes a 
police officer would have to violate a traffic law (go around the gates) to apprehend a violator.  
The safety of a police officer is at risk if this is done.  Also, police enforcement at 252,341 
private and public railroad-grade crossings is not possible.  Based on a study in Los Angeles, 
California it can be said, “the use of photo enforcement cameras for the enforcement of traffic 
laws at railroad-grade crossings is significantly less costly than the use of police officers.” 
(LACMTA, 1997)  Therefore, advanced safety improvement programs like real time 
surveillance, and automated enforcement could be enhanced by the aid of video technology in 
enforcing traffic laws to reduce violations and severe collisions at railroad-grade crossings in 
Alabama. 
 
 
Video Data Collection 
 
An effort was made in this research project to determine the rate of violations at three railroad-
grade crossings in Alabama.  The following sections describe the video data collection procedure 
and data analysis of recorded video.  Data were collected at three railroad-grade crossings, two in 
Tuscaloosa, Alabama and one in Birmingham, Alabama.  A team of two graduate students was 
involved in collecting data over a period of eight months from September 2001 to April 2002.  
Video technology was used to record traffic movements at railroad-grade crossings for 24 hours 
a day.  TDOT and the Birmingham Traffic Management Center provided assistance in the data 
collection. 
    
Site Selection and Description 
 
Based on traffic volumes and guidance from TDOT officials, two railroad grade crossings in 
Tuscaloosa were selected.  As shown in Figure 5-1, the Kansas City Southern Railway Company 
(KCS) and Norfolk Southern Railway Company (NS) line has two tracks, which run in an east-
west direction.  These tracks run parallel to 15th Street and University Boulevard, between U.S 
Route 82 and 10th Avenue, before intersecting 15th Street at an angle.  15th Street is considered to 
be one of the busiest streets in Tuscaloosa, Alabama.  The two selected crossings are located at 
the intersection of the railway tracks with 10th Avenue (Site 1) and Hackberry lane (Site 2).  Both 
sites are equipped with flashing lights and dropping gates.  The reason for selecting these 
crossings is their close proximity to University Boulevard and The University of Alabama 
Campus, and because they fall within TDOT’s traffic surveillance camera locations.  Two traffic 
surveillance cameras (Figure 5-1) located at the target intersections were used to collect video 
data at these crossings. 
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Figure 5-1.  Tuscaloosa sites and camera locations 
 

After contacting the Assistant Traffic Engineer for the City of Birmingham, the crossing on 40th 
Street Southwest (Site 3) was selected based on the high volume of gasoline tanker trucks that 
use the crossing daily.  Figure 5-2 shows the location of Site 3, which is equipped with flashing 
lights and dropping gates.  Two tracks owned by Norfolk Southern Railway Company run in a 
northeast to southwest direction at this crossing.  Officials from the City of Birmingham installed 
a University of Alabama Autoscope camera (camera 3, Figure 5-2) on a power pole located at 
the intersection of Gray Avenue and 40th Street Southwest.   
 

 
 

Figure 5-2.  Birmingham site and camera location 
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Data Collection 
 
TDOT’s traffic monitoring video cameras were used to collect video data at sites 1 and 2.  The 
first camera is located at the intersection of 15th Street and 10th Avenue and recorded traffic 
movements at Site 1.  Traffic movements at Site 2 were recorded with camera two located at the 
intersection of 15th Street and Hackberry lane.  Data were collected for five days in October 2001 
and for five days in April 2002.  Videotapes were changed every 24 hours by TDOT. 
 
Data were collected for 17 days in March 2002 at Site 3 with the assistance of the City of 
Birmingham.  Officials from the City installed the camera and also a control box on a power 
pole.  The control box stored the Autoscope equipment, computer, and three video cassette 
recorders (VCR) that were pre-timed to record data for 24 consecutive hours.  A team of two 
graduate students changed the tapes daily. 
 
 
Analysis and Results  
 
Analysis of video data from the three sites was performed to study the effect of train arrival time 
on the number of violations.  The following section provides a brief discussion on data reduction, 
processing, and analysis of train arrival timings and violations. 
 
Data Reduction 
 
Data in this study mainly focused on train arrival times, and the types of traffic violations at 
railroad-grade crossings.  An undergraduate student viewed the videocassettes and recorded the 
following timings manually: 
 

1. Flashing light activation time; 
2. Violation time; 
3. 3-point and U-turn time (a 3-point turn is a turn made in three stages to travel in the 

opposite direction from the crossing.  A U-turn is similar to a 3-point turn, but is made in 
one continuous loop); 

4. Train arrival time; 
5. Train departure time; and  
6. Time when the gates were in a vertical position. 

 
Violations were grouped into two categories after the initial data analysis process.  The first 
category, termed “before train” (BT) violations, occurred in the time interval between the 
activation of flashing signals and the train entering the crossing.  The second category, termed 
“after train” (AT) violations, occurred after the train left the crossing and before the gates were 
completely raised.  A combination of BT and AT violations is referred to as “sneak through” 
violations.  Any 3-point or U-turn is referred to as TPUT. 
 
Although data were collected for 10 days at Site 1, only nine days of data were available for 
analysis as the TDOT’s traffic management center lost signals from the traffic monitoring 
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cameras for a day due to technical problems.  Similarly, for Site 2 only eight days of data were 
available.  Seventeen days of complete data were available for Site 3.  Thus, 34 days of data (24 
hours a day) were available for data analysis. 
 
Violation Data and Observations 
 
Table 5-4 shows a summary of recorded BT violations, AT violations, and TPUTs.  A total of 
168 sneak through violations and 238 TPUTs were observed in 34 days.  The average rate of 
sneak through violations was 4.94 per day, while the average rate of TPUTs was 7.00 per day.  A 
closer look into the violation rate at each site indicated that the railroad grade crossing at 40th 
Street Southwest in Birmingham had the highest rate, 7.65 sneak through violations per day.  On 
the other hand, the crossing at 10th Avenue in Tuscaloosa had the highest TPUT rate, 19.44 per 
day.  
  

Table 5-4.  Summary of violations and TPUTs for sites 1-3 
 

Site BT AT Total sneak through 
violations (BT+AT) TPUTs Data collection 

period (Days) 
Number of sneak 

through violations 
per day 

Number of 
TPUTs per day

1 23 7 30 175 9 3.33 19.44 
2 8 0 8 44 8 1.00 5.50 
3 128 2 130 19 17 7.65 1.12 

Total 159 9 168 238 34 4.94 7.00 

 
A summary of train arrivals and gate activations for these three sites is illustrated in Table 5-5.  
A total of 788 trains and 809 gate activations were observed.  The difference in the number of 
trains and gate activations is attributed to the fact that there were 33 gate activations without a 
train approaching the crossing.  Also, there were two instances when a utility truck approached 
the crossing without the gates being activated.  
 
In addition to the values and information discussed above, there were a few special observations 
made at these sites: 
 

1. 10th Avenue, Tuscaloosa, Alabama: 
a. Five violations were observed when the gates were activated without a train 

approaching the crossing; 
b. Six violations were observed when a utility truck took 155 seconds to reach the 

crossing after the gates had been activated; 
c. One violation was observed when a freight train took 141 seconds to reach the 

crossing after the gates have been activated; 
d. One train approached the crossing just two seconds after a motorist snuck through 

the crossing (a near hit); and   
e. Once a train approached the crossing within five seconds after the flashing lights 

were activated; the gates just started moving down when the train reached the 
crossing.  There was no traffic on the approach lane because it was very early 
(1:10 AM) in the morning. 
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2. 40th Street Southwest, Birmingham, Alabama: 
a. Due to technical problems a train stopped on the tracks and blocked the crossing 

for 21,442 sec (nearly 6 hours).  23 TPUTs were observed during this time, but 
are not reported in Table 5-5 because the crossing was blocked due to technical 
problems and not due to train operations. 

 
Table 5-5.  Summary of number of trains and gate activations 

 

 Site 1 Site 2 Site 3 Total

Freight Trains 180 130 403 713 

Passenger Trains 16 13 28 57 

Utility Trucks 9 8 1 18 

Total Trains 205 151 432 788 

Gate Activations 222 158 429 809 

Utility Trucks without
Gate Activation 1 1 - 2 

Gate Activations 
without a Train 20 10 3 33 

Two Tracks Occupied 2 1 6 9 

 
 
Violations and TPUTs vs. Train Timings 
 
Figure 5-3 shows a histogram of train approach timings and the number of before-train sneak-
through-violations.  Approach time is defined as the time taken by a train to reach the crossing 
after the flashing lights have been activated.  The maximum number of violations (69) occurred 
when the train reached the crossing 41-50 seconds after the flashing lights were activated.    
 
There were not many after-train sneak-through-violations.  Figure 5-4 shows a plot of the 
number of ATs versus train departure times.  Departure time is defined as the time required for 
the gates to return to the vertical position after the train left the crossing.  Four violations were 
observed when the departure time for a utility truck was 91 to 100 sec.  Excluding these four 
violations, only five AT violations were observed in 34 days. 
 
Figure 5-5 illustrates the number of TPUTs for every 30-second time interval when the crossing 
was blocked.  No particular trend was observed for TPUTs.  However, the maximum number of 
TPUTs was observed when the train blocked the crossing for 151-180 seconds.    
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Figure 5-3.  Sneak through violations before train 
 

 
 

Figure 5-4.  Sneak through violations after train 
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Figure 5-5.  3-point and U-turns 
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A comparison of day and night violations for sneak through and TPUTs can be seen in Figure 5-
6.  There were more sneak through violations and TPUTs during the day.  This is because there 
are more traffic movements at railroad-grade crossings during the day. 
 

 
 

Figure 5-6.  Comparison of day and night violations and TPUTs 
 

Discussion 
 
From the above observations it can be seen that there is a need for traffic law enforcement and 
safety improvement programs at rail-grade crossings in Alabama.  Long delays or faulty gate 
activations without a train approaching the crossing may entice motorists to violate traffic laws, 
jeopardizing their safety.  The scope of this report was limited to studying the effect of train 
arrival times and total blockage times on the number of violations and TPUTs.  Other geometric 
factors such as sight distance, speed limits on approach lanes, and distance between two tracks 
that affects the number of traffic violations were not investigated.  More research is 
recommended to study the effects of these factors on motorists, and to address safety 
improvements at rail-grade crossings.   
 
 
Conclusions  
 
Video data collection was helpful in obtaining information regarding train arrival times and the 
number of violations at railroad-grade crossings.  The greatest advantage of video data collection 
is the ability to double check arrival times to eliminate errors in data reduction.  However, care 
should be exercised in installing and operating video equipment; the recorded video was not 
always clear due to technical problems.  The equipment should be checked frequently to 
eliminate these types of errors because important information might be lost.  
 
A violation rate of 7.65 sneak through violations a day at Site 3 in Birmingham emphasizes the 
need for automated enforcement of traffic laws in Alabama.  A rate of 19.44 TPUTs per day at 
Site 1 in Tuscaloosa illustrated the need to deploy advance warning of train arrival systems at 
similar railroad-grade crossings in Alabama. 



54 

Recommendations for Future Study 
 
This task was limited to investigate the effect of train arrival times on the number of violations 
and TPUTs.  Other crossing parameters like sight distance, speed limits on approach lanes, 
number of approach lanes, and type of control device could be studied to predict rate of 
violations at railroad-grade crossings.   
 
During data collection, care should be exercised in installing the video equipment so that a clear 
image of the gate activations is visible; video equipment at TDOT had to be adjusted several 
times to get an optimal view of railroad-grade crossings without compromising the view of the 
queue length (queue length of vehicles stopped at railroad-grade crossings is helpful in checking 
TPUTs). 
 
An automated enforcement pilot project should be implemented to gauge the effect of automated 
enforcement on violators of traffic laws at railroad-grade crossings in Alabama.  Similar kind of 
pilot study at several other critical sites throughout the state is highly recommended to help 
propose a new legislation on automated enforcement in Alabama. 
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Section 6 
Variable Message Signs for Violation Notification 

 
 
Introduction 
 
Aggressive driving is one of the most prevalent factors contributing to traffic crashes in the 
United States.  The National Highway Traffic Safety Administration (NHTSA) estimated that 
about one-third of all crashes and two-thirds of resulting fatalities in the U.S. can be linked to 
aggressive driving behavior.  Speeding and red light running are considered to be the most 
common characteristics of aggressive driving (NHTSA, 2002).  It has been shown that VMS can 
be employed as a speed deterrent.  Mobile VMS, coupled with speed detection devices, can be 
installed at places where speeding has been a problem.  This provides drivers with real-time 
messages indicating their speeds as well as the posted speed limit.  A similar application was 
examined in this research to improve driver compliance at intersections by providing real-time 
messages for red-light-runners indicating that they ran a red light.   
 
The objective of this study was to develop a methodology for using traffic-monitoring cameras 
already installed at highway intersections to detect motorists who had run a red light.   
 
The following tasks were performed in this regard:  

1. Twenty seven traffic-monitoring cameras owned by TDOT were checked to determine 
which had favorable angles and elevations to detect violations; 

2. Autoscope software and hardware were combined with conventional traffic surveillance 
cameras (instead of regular Autoscope cameras) to detect vehicles; and 

3. Autoscope hardware was examined to determine if it could trigger a VMS. 
 
 
Methodology 
 
The Autoscope Solo Wide Area Video Detection System developed by the University of 
Minnesota and Image Sensing Systems, Inc., uses machine vision technology to collect traffic 
data.  This system can be used to gather vehicle speed, length, traffic volumes, delays, and queue 
lengths at intersections.  Figure 6-1 shows the setup for the Autoscope system.  It consists of a 
machine vision processor (MVP) camera, hub-interface panel, hub, and supervisor computer.   
MVP is a video processor that accurately detects vehicles by combining a video camera with 
electronic lens control, a digital image processor, and a communications port.  The hub-interface 
panel serves as a mediator and provides the connection between the MVP and the hub.  The hub 
communicates with the MVP to provide detection information, detection outputs, and video 
signals which are sent to external devices.  The hub is also connected to the supervisor computer.  
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The Autoscope software on the supervisor computer is used to configure the MVP and the hub, 
and to set different types of virtual detectors used to monitor traffic (Autoscope User Guide). 
 

 
 

Figure 6-1.  Autoscope system setup 
 

The MVP can be installed in the camera or in the Hub.  Autoscope systems with the MVP 
installed in the hub can be connected to common traffic-monitoring cameras to detect vehicles.  
These cameras are typical video cameras, which are unlike the Autoscope cameras that have the 
MVP built into the cameras. 
 
TDOT maintains 27 traffic-monitoring cameras for traffic surveillance.  They are operated from 
the traffic management center at TDOT.  The TMC has a complete Autoscope system.  The 
MVP and hub-interface panel are at the TMC, thereby allowing any of the 27 traffic-monitoring 
cameras to act as an Autoscope camera.   
 
After evaluating the field of view provided by all the traffic-monitoring cameras in Tuscaloosa, a 
camera (camera one) installed at the intersection of Lurleen Wallace North (LWN) and Stillman 
Boulevard was selected for this study.  Figure 6-2 shows the camera location at this intersection.  
With the help of a technician at TDOT, video output from this camera was fed into the 
Autoscope hub at the TMC.  The image provided by the camera was calibrated using Autoscope 
software.  Figure 6-3 shows the speed detectors and calibration of video image setup for this 
camera.  Speed detectors were placed in each of the three lanes.  When the system was run with 
this setup (Figure 6-4), the software detected vehicle speeds from the video image.  Later the 
setup was checked with a count detector and a presence detector.  The software detected vehicles 
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for each of the detector types.  It should be restated that this image was produced by a traffic-
surveillance camera and not by a relatively expensive Autoscope camera.  It can be concluded 
from this study that typical traffic-monitoring cameras can be used, instead of a regular 
Autoscope camera, as long as the image is sent to MVP and then run through the Autoscope 
software. 
 

 
 

Figure 6-2.  Camera location at Lurleen Wallace North (LWN) and Stillman Blvd 
 

 
 

Figure 6-3.  Speed detectors and calibration of video image obtained from camera one 
 

This setup can be extended to detect red-light violators, by providing signal phase timings from 
the signal controller to the Autoscope software.  For the purpose of detecting red-light violators, 
the signal phases (red, green, yellow) were split into two divisions; the red phase (red signal 
time) and the not-red phase (green + yellow phase time).  When these two phases (red and not 
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red) were detected, a signal was sent to the Autoscope software using the input/output port on the 
hub.   
 

 
 

Figure 6-4.  Autoscope setup to detect vehicle speeds 
 
Figure 6-5 shows the setup for detecting red light violators.  Autoscope only monitors vehicles 
that pass the detection zone during the red phases.  Since the hub at the TMC and the traffic 
controller at the intersection were far apart, a time lag was observed while detecting red and not 
red phases.  Because of this, the Autoscope red light violation count might not be accurate.   
 

 
 

Figure 6-5.  Autoscope setup to detect red-light violations at LWN and Stillman Blvd 
 

An alternative method for accurately detecting red light violators at intersections with a pre-
timed signal plan is to set up a “dummy traffic controller” at the TMC.  The dummy traffic 
controller has the same signal-timing plan as the traffic controller in the field.  Except for the 
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traffic-monitoring camera, the entire Autoscope and controller setup can be installed in the TMC.  
Figure 6-6 shows the Autoscope setup to detect red light violators at a location with a pre-timed 
signal plan.  The output of this setup will be a count of red light violations at an intersection and 
a voltage (Figure 6-7) that can trigger a VMS indicating a violation.  Video output from traffic-
monitoring cameras can be recorded to check the accuracy of the system. 
 

 
 

Figure 6-6.  Autoscope Setup to detect red light violations with pre-timed traffic control plan 
 
 

 
 

Figure 6-7.  Autoscope output used to trigger VMS 
 

Although, the setup was theoretically viable for detection of red light violations, it was not 
practically tested due to technical issues associated with connections in the TMC besides the 
time frame and scope of this research project. 
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Conclusions 
 
A methodology to detect red-light running vehicles with traffic-monitoring cameras was 
proposed.  A quality video image is critical to accurately detect red-light violations.  To improve 
the video image, the camera location should be high (30 feet or more) with a clear view of the 
intersection.  The traffic-monitoring cameras installed by a traffic management center can be 
used effectively to detect red-light violators, in addition to general surveillance.   
 
The proposed setup to detect red light violators can be tested and verified with video recording of 
the intersection to determine the accuracy of using traffic-monitoring cameras with Autoscope 
software, which has the capability of activating a VMS.  Triggering a VMS upon detection of a 
red-light running vehicle appears to be feasible. 
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Section 7 
Mobile Video Units for Intersection Analysis 

 
 
Introduction 
 
Mobile video units can be used for temporary monitoring of traffic flow for traffic research 
purposes.  Mobile video units can determine traffic flow parameters to suggest specific 
permanent video applications for traffic management and safety.  This section of the report 
discusses the application and testing of such mobile video units.   
 
The objective of this task was to evaluate mobile video units for temporarily monitoring traffic 
flow for research purposes.  This was accomplished by determining the feasibility of using 
portable digital video cameras for roadside traffic data collection.  Two mobile video units were 
tested in this regard, a conventional video camera recorder, and a digital video camera recorder. 
 
 
Background 
 
Video installations can be permanent (pole or building mounted), or mobile (vehicle or tripod-
mounted).  Each type of installation has its own advantages and disadvantages.  The scope of this 
section of report was limited to only mobile video units that can be used for traffic research 
purposes.  Traffic data collected from these mobile video units can be used to select the best 
locations to install permanent enforcement cameras.  Mobile video units can be used to 
positively demonstrate the existence of traffic violators at intersections and at rail-grade 
crossings, proving the need for permanent installation of automated enforcement technologies 
(McFadden and Graettinger, 2000).   
 
Conventional Video Camera Recorder 
 
Portable conventional video recorders were used to collect traffic data at four intersections on 
15th Street in Tuscaloosa, Alabama.  A group of six students collected morning peak data from 
7:00 to 9:00 AM and evening peak data from 4:00 to 6:00 PM Monday through Friday.  The data 
collection process was spread over a two-month period.  Video cameras (Figure 7-1) were set up 
on a 60-inch tripod by the side of the road to record traffic movements at these intersections.  
The recorded videotapes were analyzed to obtain volumes, headways, arrival distributions, and 
queue lengths.  For each approach, this data was used to compute the field value of delay at these 
intersections.  Refer to Section 4 of this report for a detailed description of data collection and 
analysis. 
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Figure 7-1.  Conventional video recording camera 
 
Digital Video Camera Recorder (Camcorder) 
 
Camcorders were used to record traffic movements at three railroad-grade crossings in 
Tuscaloosa, Alabama.  Figure 7-2 shows the setup of a camcorder at a rail-grade crossing.  A 
group of three graduate students collected morning peak data from 7:00 to 9:00 AM, afternoon 
peak data from 11:00 AM to 1:00 PM, and evening peak data from 4:00 to 6:00 PM, for three 
consecutive days.  Camcorders were set on 60-inch tripods, approximately 10 feet from the edge 
of the road and 200-300 feet from the crossing, to record traffic movements.   
 
All three railroad-grade crossings were equipped with flashing lights and gates.  A total of 18 
hours of video data were analyzed to collect violation data with respect to gate, light, and train 
timings.  A student viewed the recorded videocassettes and recorded the following timings 
manually: 
 

1. flashing lights activation time; 
2. violation time; 
3. 3-point and U-turn time; 
4. train arrival time; 
5. train departure time; and 
6. time when the gates were in the vertical position. 

 
For each train crossing the videocassettes were viewed several times to record the exact time of 
violations and train arrivals.  Based on this preliminary data, extensive data collection was 
carried out at two of the three railroad-grade crossings using surveillance cameras installed and 
operated by the City of Tuscaloosa.  Refer to Section 5.0 of this report for a detailed description 
of data collection and analysis. 
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Figure 7-2.  Digital video camera recorder 
 
 
Comparison of Conventional and Digital Video Camera Recorders 
 
Both conventional video camera recorders and camcorders were used to collect traffic data for 
this task.  Though camcorders are more expensive than conventional video cameras, they have 
more capabilities.  Unlike conventional video recorders, camcorders are lightweight and smaller, 
which makes them easy to transport and install.  Camcorders record high-resolution digital 
video, which can be transferred to videotape or a computer.  Selected still images and movie files 
of a violation can be taken from the digital video, which is not possible with the analog recording 
from a conventional video recorder.  Battery life, which is critical for field data collection, is 
much higher for camcorders compared to conventional video cameras.  A camcorder can run for 
more than 8 hours on a single battery charge.  Unlike conventional video recording, video 
recording from camcorders can be enlarged or zoomed at a later time to get a clear view of the 
image.  For example, this feature is helpful in reading license plates for origin-destination 
surveys.  Camcorders can be assigned an internet protocol address to view real time data from a 
remote location like the TMC.  This feature can be used at locations that have temporary traffic 
management issues that do not justify permanent camera installations.  
 
 
I3 Cam Van 
 
The Intelligent Transportation Systems Information and Infrastructure Laboratory (I3 Lab) of the 
University of Nebraska, Omaha provides real-time traffic data from a fully self-contained mobile 
machine vision and ITS laboratory, named I3 Cam Van.  As shown in Figure 7-3, I3 Cam Van 
consists of two Autoscope Solo Pro cameras mounted 42 feet high on a telescoping mast.  The 
mobile lab is equipped with a computer and a video recording system to store traffic data (I3 Lab 
Website).  Unlike conventional and digital camera recorders, the I3 Cam Van is capable of 
processing a wide range of traffic parameters, and allows multi-tasking on multi-lane roads with 
ease and safety in various weather conditions.   
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Figure 7-3.  I3 Cam Van 
 
 
Conclusions 
 
Mobile video cameras can accurately collect traffic data.  However, care should be exercised 
when collecting data on multi-lane roads.  The camera should be located high enough to capture 
a clear image of vehicles traveling on each lane at all times.  Lightning conditions can affect 
recording quality, and weather conditions should be checked before planning field data 
collection using video.  During data cleaning of recorded video, videocassettes were viewed 
several times to collect the exact times when events occurred, which obviously cannot be done 
for manually collected data.  Video data collection gives a permanent record of traffic situations, 
ensuring that accurate and vital information is not lost.  For research purposes, a permanent 
record always provides an opportunity to check videotapes at any time for additional traffic data.   
 
The implementation of mobile video systems and the newly developed cam van technologies 
depend on factors such as amount of data required, location characteristics, number of 
intersections or road segments under study, weather conditions, and funds allocated for the task.  
Mobile video systems can be potentially employed in Alabama for temporary and permanent 
traffic management and safety purposes.     
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Section 8 
Video for Emergency Response Management 

 
 
Introduction  
 
Effective detection, response, clearance, and recovery from disabled vehicles or vehicle crashes 
can save lives, reduce delays, save money, and enhance safety for motorists.  Identifying and 
locating traffic incidents and responding to these emergencies involves many agencies.  
Coordination between these agencies is very important so that they can verify, locate, and 
respond appropriately to each emergency.  The responsibility of these agencies becomes even 
more significant during severe transportation conditions like an emergency evacuation when 
resource allocation is critical.  Hence, there is a need for an integrated system that coordinates 
information about an incident among response teams.  Research has demonstrated that incident 
detection and observation with video technology, coupled with response team communication, 
offers real-time visual information that enhances response, thereby potentially saving lives and 
money.   
 
The goal of this task was to cast light on the use of video for emergency response (ER) in 
Alabama, and to determine if video (surveillance) cameras currently in place and owned by the 
City of Tuscaloosa could be employed for ER management.  This section of the report describes 
case studies where video applications have been successfully employed for ER.   
 
 
Background 
 
Disruption of traffic flow can be caused by any number of uncontrollable variables.  Congestion, 
obstructions, power-outages, crashes, etc., are all incidents that have the potential to disrupt 
traffic.  Regardless of the reasons for these incidents, it is the job of emergency response teams 
to attend to the situation.  To successfully respond, interagency coordination is crucial between 
transportation management and public safety agencies.  These agencies use different systems for 
detecting incidents and collecting information to serve their needs and purposes.  An integrated 
system could improve the response time and resource allocation.  The ability of video detection 
systems to provide accurate, real-time information about an incident will allow transportation 
officials to almost instantaneously initiate a response plan and make crucial decisions.     
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Video for Emergency Response Management – National Case Studies 
 
The following sub-sections briefly describe some of the successful national experiences related 
to the use of video for improving emergency response and incident management. 
 
Multi-Jurisdictional Live-Aerial Video Surveillance System (1991) 
 
The Virginia Department of Transportation (VDOT) used information obtained from live aerial 
video cameras for incident and congestion management.  The live video was provided by a 
helicopter operated by the Virginia Police Department (VPD) of Fairfax County.  A project was 
conducted to evaluate: 
 

• the use of video imaging for incident and traffic management, 
• the capture and transmission of the video images, 
• the effectiveness and limitations of traffic surveillance from a helicopter, and 
• a video application for multiple agency benefits.  

 
Real-time images from video cameras were provided to VDOT, VPD, emergency services, and a 
mobile law enforcement van through links to the Fairfax County Public Safety Communication 
Center (TESCNET, 2001).  This concept provided video surveillance over a large geographic 
area at a low initial cost.  The video was used to gather traffic condition information over a 
planned route, to identify and resolve congestion problems, for traffic studies, and in areas that 
did not have full time surveillance. 
 
Houston TranStar (1993) 
 
TranStar is a unique multi-agency program developed to provide a coordinated approach toward 
transportation and emergency operations in the Greater Houston area.  Components managed by 
TranStar include 257 closed circuit television (CCTV) freeway cameras, 100 variable message 
signs, emergency management operations, and a flood alert system.  The video cameras provide 
continuous images of over 160 miles of freeway, out of a total of 300 miles.  This video is sent to 
all the participating agencies helping them to improve on various transportation practices and 
emergency management response and recovery functions (TESCNET, 2001).  This way of 
obtaining real-time information created an environment that improved: responsiveness, personnel 
and equipment resources management, pooling of finances, and eliminated administrative 
restraints (Houston TranStar, 1999). 
 
NAVIGATOR, Atlanta, Georgia (1993) 
 
One source of data to Georgia’s Intelligent Transportation System is NAVIGATOR, which 
gathers traffic incident information by using a video and traffic detection system.  This system 
provides real-time video images of road conditions that are sent to TMC operators.  This video 
data serves as an incident verification tool, which reduces response time and expedite the 
removal of incidents thereby minimizes congestion (ITSNEWS, Feb 2001).  Interstates 75 and 
85 are equipped with over 300 black and white cameras and 67 pan, tilt, and zoom full color 
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cameras, which continuously gather data on incidents, average speed, traffic volume, and vehicle 
classification.  In addition, a camera mounted on a helicopter provides live video within a 50-
mile radius of Atlanta.  
 
With the combination of video monitoring, detection, data management, and telecommunications 
technologies, NAVIGATOR is able to detect, verify, and quickly respond to highway accidents, 
stalls, or debris (TESCNET, 2001).  The agencies that benefit from this system are the Georgia 
DOT, Highway Emergency Response Operator, fire, police, EMS, and Motor Vehicle 
Emergency Response.   
 
TransGuide, San Antonio, Texas (1993) 
 
TransGuide is one of the nation’s best Intelligent Transportation Systems.  It was designed by the 
Texas Department of Transportation’s San Antonio’s district.  This system was designed to 
provide real-time information to motorists about traffic condition such as accidents, congestion, 
and construction.  It uses cameras, changeable message signs (CMS), and a fiber optic network 
to gather traffic information, provide travel times to motorists, and respond rapidly to 
emergencies on the freeways (TESCNET, 2001).  The system has been operational since 1995 
and currently utilizes 118 video cameras to monitor 72 of the 289 miles of San Antonio’s 
highways.  Maps showing the location of incidents, traffic congestion, and lane closure 
information are provided on the Internet every five minutes.  In addition to location information, 
the cameras provide live video images to the Internet.  The operation cycle of TransGuide is 
shown in Figure 8-1, wherein an incident occurs on the left side of the figure and within two 
minutes the TMC detects, verifies, begins response, and posts information for motorists on a 
VMS.   
 

 
 

Figure 8-1.  Operation cycle of TransGuide 
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AZTech, Phoenix, Arizona (1996)   
 
The goal of the AZTech project was to develop an integrated ITS for the Phoenix metropolitan 
area.  This system was designed to provide travel information such as real-time traffic 
conditions, related road closures, and accident information.  AZTech incorporated isolated 
systems of traffic management, incident management, and transit agencies into one integrated 
system that could provide information to motorists through the use of live traffic cameras and 
variable message signs.  This system is linked through a fiber optic communication system. 
 
AZTech was designed to improve emergency services and incident response by coordinating 
police and fire departments, the Department of Public Safety, and 911 emergency personnel.  
The AZTech project included a private company, TRW, which created the integrated system to 
exchange data and video information between agencies.  Information obtained from video is 
analyzed and information about delay, detour information, etc., are disseminated to motorists 
through CMSs.  The Phoenix Fire Department is able to immediately analyze an incident by 
monitoring video cameras, which provides an incident management tool (TESCNET, 2001).   
 
Smart Trek, Seattle, Washington (1996) 
 
Smart Trek is an ITS project designed to deliver regional, multimodal traveler information to 
help motorists and commuters make more intelligent transportation decisions.  Communication 
links were established between the Washington DOT’s TMC and local and regional emergency 
response centers.  This transfer of information delivers real-time video traffic data to emergency 
response personnel, which improves the response times and emergency services.  Incident 
response vehicles are equipped with two-way video communication systems to allow images to 
be sent to the TMC from the scene of an accident for regional (upstream) traffic management, 
and to the vehicle for enhanced on-site traffic management.  These images are also available 
through the Internet for use by other emergency responders (TESCNET, 2001).   
 
The City of Bellevue and Washington DOT engineers use the traffic cameras to provide real-
time traffic congestion patterns to motorists, to monitor ramps, to evaluate signal performance, 
and to confirm traffic incidents.  Depending upon the traffic flow, appropriate alterations are 
made to the traffic signal systems.  Similarly, Washington DOT’s Tacoma Traffic Flow Map 
uses video detection technology to continuously monitor highway congestion and speeds on the 
Tacoma Narrows Bridge.  The results are shorter traffic delays, faster emergency response, and 
improved public safety.  A screen capture from a Smart Trek traffic television is shown in Figure 
8-2. 
 
CommuterLink, Salt Lake City, Utah (2000) 
 
CommuterLink is a computer-controlled system designed to monitor and manage traffic flow on 
freeways and surface streets through the use of 150 CCTV cameras, 57 variable message signs, 
550 traffic signals, ramp meters, traffic speed and volume sensors, pavement sensors, and 
weather sensors (USDOT News, 1999).  Data from these components are gathered and analyzed 
in the Utah Department of Transportation.  The data is then transmitted to the respective Salt 
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Lake City and Salt Lake County traffic control centers by fiber optic cables.  CommuterLink 
uses over 150 CCTV cameras along surface streets and freeways to monitor traffic and identify 
the exact location and cause of problems.  Appropriate emergency response teams are then 
dispatched to the accident sites to reduce the delays caused by accidents.  For minor accidents or 
stalled vehicles, operators can notify UDOT's Incident Management Team to provide assistance.  
For major accidents, the Utah Highway Patrol and other emergency service providers can be 
alerted (TESCNET, 2001).  
 

 
 

Figure 8-2.  SmartTrek-traffic TV 
 
Summary of existing systems 
 
This review of nationwide experiences with video systems highlights the applications of video in 
the areas of emergency management and public safety.  It is a fact that state and local 
governments suffer from the costs of congestion.  Innovative and cost-effective techniques such 
as video are being implemented around the nation to tackle the challenges of congestion.  Real-
time video data sharing, either through direct feed or the Internet, has become a common practice 
between transportation management and public safety agencies.  These video technologies allow 
the state and local agencies to: 
 

• detect congestion caused by accidents and initiate response quicker than before, 
• verify accident sites and determine the appropriate emergency response required, 
• respond by dispatching appropriate resources, 
• provide delay times and detour information to motorists through CMS,  
• continuously monitor real-time traffic condition during peak hours, and 
• build interagency communications by simultaneously providing the real-time video data 

to all the participating agencies in emergency management program. 
 
 
Video for Emergency Response in Tuscaloosa 
 
The primary purpose of this section of the research was to evaluate the use of video camera 
system currently in place and owned by the City of Tuscaloosa for the purpose of identifying 
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incidents and determining appropriate responses by emergency service vehicles.  The analysis 
focused on ensuring rapid response and efficient use of resources.      
 
The City of Tuscaloosa was chosen because of its developing ITS network, which includes the 
expansion of the City’s traffic control center and installation of CCTV cameras at various 
locations throughout the city.  The City also involves stakeholders such as the Tuscaloosa Police 
and Fire Departments, and the City of Northport in this program (McFadden and Graettinger, 
2000).  Tuscaloosa currently has an Advanced Traffic Management System that consists of 27 
CCTV cameras on major arterials, and eight video detection systems (Autoscopes) at the TMC.  
The system will be expanded to include 11 dynamic message signs, a traffic data geographic 
information system, an integrated emergency management system, and a real-time traffic 
congestion analyzer. 
 
Autoscope for Emergency Response 
 
Autoscope is a proven video vehicle detection system that combines real-time image processing 
and computerized pattern recognition within a flexible software platform.  This technology offers 
fully automated remote video detection of incidents and visual verification, thereby permitting 
early notification of events and improving emergency response times and resource allocation.  In 
addition, the system has the ability to monitor multiple lanes with one camera.  The wide range 
of information gathered provides traffic managers with a means to reduce roadway congestion, 
improve roadway planning, and provide real-time detection information.   
 
Typically, any incident such as a vehicle pulling over to the side of the road, leads to a slowdown 
of traffic.  As speeds decrease, the slowdown ripples back through the traffic with a certain 
velocity.  An incident detector can process the rate at which a queue builds to determine whether 
an incident has occurred.  Other traffic parameters are monitored that can suggest an incident has 
occurred, such as an accident or a stalled car that produces a sudden variation in roadway 
capacity.  These monitors actually detect the shock wave (sudden change in traffic flow), which 
propagates upstream from the site of the incident (Incident Detectors, 2001).   
 
To provide incident detection, the video detection system is interfaced with a machine vision-
based Automated/Autoscope Incident Detection Algorithm (AIDA).  After these virtual incident 
detectors are overlaid onto the field of view, the detectors calculate traffic parameters such as 
speed, volume, occupancy, stopped vehicles, and density.  These incident detectors then process 
information generated by count and speed detector pairs to measure changes in the traffic flow.  
When the AIDA detects a sudden speed drop, the incident detector generates an audible alarm, a 
live video is displayed, and the TMC operators take the necessary action to verify a potential 
emergency.  The video obtained from this system can be broadcast to the participating ER teams 
through television monitors.  Although the whole process is not yet operational in the City of 
Tuscaloosa, efforts are in progress to implement this system (Michalopoulos and Samartin, 
1998).   
 
One of the improvements in AIDA is the development of a stopped vehicle detector, which could 
be used to simply detect stopped vehicles on the shoulder within the camera’s field of view.  To 
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minimize false alarms due to regular congestion during peak hours, a scheduler can be used to 
vary parameter thresholds at different times of the day.  This helps operators at the TMC and 
other ER teams identify actual incidents.  These systems can use pan and zoom cameras to scan 
the area to determine the cause or condition of the incident (Samartin, 1997).  In addition, 
videotapes can be recorded when incident alarms are detected, thereby allowing for off-line 
testing and evaluation of the response efforts.  To minimize congestion, a VMS on the upstream 
side of an incident can be triggered by the Autoscope to display messages indicating the 
downstream conditions. 
 
Surveillance Cameras for Emergency Response 
 
TDOT currently has 27 CCTV cameras and eight Autoscope cameras placed throughout the city 
for traffic safety and management purposes.  Unlike an Autoscope camera with a built-in 
machine vision processor, TDOT has a common machine vision processor that allows 
simultaneous video input from all eight Autoscope cameras, which are controlled remotely from 
the TMC.  An Autoscope camera provides the video feed to a monitor where the image is 
captured and calibrated.  Detection zones are overlaid and the image is sent to the MVP, which 
analyze the video and process information on speed, volume, occupancy, stopped vehicles, etc.   
 
Any surveillance camera can be used in place of an Autoscope by putting the feed through a bi-
link computer that is interfaced with the Autoscope software and the common MVP.  The CCTV 
image shown in Figure 8-3 can be processed by Autoscope and used for traffic detection.  This 
was successfully tested and demonstrated that surveillance cameras can supply video feed in a 
format that can be processed by MVP.  This observation is very significant as the inexpensive 
CCTV cameras currently in place and owned by the City of Tuscaloosa could be used for 
incident detection and could improve ER time. 
 

 
 

Figure 8-3.  Video image monitor 
 

 
Conclusions 
 
The need for a reliable video system that can improve efficiency by establishing a 
communication link between various ER teams was investigated.  The use of video detection to 
provide real-time traffic data on incident and emergency management was evaluated from some 
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of the nation’s successful video/emergency experiences.  The project also evaluated the current 
status of Tuscaloosa’s growing ITS network relative to video/emergency detection and response.  
Using a video camera and the AIDA software, early detection of incidents can be accomplished.  
It can be concluded that inexpensive CCTV cameras can be deployed in place of Autoscope 
cameras to provide video input to the MVP interface.  Thus video can be effectively used for the 
purpose of emergency response. 
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Section 9 
Conclusions and Recommendations 

 
 
The objective of this research was to evaluate various applications of low-cost video technology 
systems in areas of transportation management and safety in Alabama.  Several video systems 
such as conventional video recorders, digital video cameras, Autoscope cameras, and 
surveillance cameras were applied and tested at various locations.  Listed below are the 
transportation areas that were investigated in this project, and that showed a potential benefit 
from video technology: 
 
Conventional video cameras: intersections and mid-blocks,  
Digital video cameras: railroad grade crossings, 
Autoscope cameras: compositional traffic counts, red-light running, speed violation study, 

emergency response management, and activating variable message signs, and 
Surveillance cameras: red-light running study using Autoscope software, video recording of 

intersections. 
 
It was shown that video technology could provide an alternative to standard data collection 
methods like loop detectors, pitot tubes, and manual traffic counters.  Video data collection is 
inexpensive, cost-effective, low-maintenance, provides more data, easy to setup, and requires 
fewer infield personnel.  Video data can be analyzed manually, or automatically using machine 
vision technology such as Autoscope for vehicle classification of traffic data.  In studies related 
to corridor analysis and railroad grade crossing safety, video allowed examination of recorded 
data any number of times to report accurate traffic parameters.   
 
In this work, the literature review provided valuable information and identified several areas 
where video technology can be employed, such as: 
  

• traffic surveillance on freeways, 
• incident detection and response, 
• electronic enforcement, 
• travel time studies, and 
• origin-destination survey. 

 
Some problems and issues that were of concern during this research are summarized below: 
 

• safety of the equipment in the field, 
• safety of the crew working with the video equipment on high volume roads, 
• roadside video setup distracts drivers and gains unwanted public attention, 
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• video data reduction process involves a considerable amount of time,  
• water and dust on the camera lens, 
• improper video recording due to technical problems,  
• unclear recorded image due to dull lighting conditions,  
• blooming of image due to headlights of vehicles at nights,  
• occlusion of small vehicles because of tall vehicles moving in an adjacent lane, and 
• inaccurate machine counts due to vehicle occlusion. 

 
Some recommendations for successful field video data collection are:  
 

• check weather conditions and perform a preliminary site survey before planning field 
data collection, 

• train the crew in setting up the equipment before conducting the field installation,  
• exercise care when installing and operating the video equipment in the field, 
• check equipment to eliminate technical problems that might cause loss of vital 

information, 
• provide a housing for the camera to protect the camera and improve the image by 

reducing distortions caused by wind, snow, rain, frost, and fog, and 
• mount video cameras high enough (greater than 30 feet) to obtain a clear view and 

eliminate obstruction of smaller vehicles by large vehicles. 
 
Based on this research, it can be concluded that agencies in Alabama can employ video 
technology for traffic data collection and implementation in advanced traffic management 
systems.  This technology can help reduce traffic congestion, improve roadway planning, and 
provide traffic research opportunities to ensure better traffic management and safety. 
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Appendix 
 
 
Program Code     Comments 
 
 
function UTCA25(Syx,Sxx,Syy,X,AvgY) Defines function name with input variables 
 
A=Syx × inv(Sxx);                            Calculates matrix A by performing matrix operations on Syx and Sxx 
 
BBt=Syy-( Syx × inv(Sxx) × (Syx)' );              Calculates matrix BBt by performing matrix operations on Syx, Sxx, 

and Syy 
 
d=det(BBt);                                Computes the determinant of matrix BBt 
 
R=rank(BBt);                              Computes the rank of matrix BBt 
 
E=eig(BBt); Computes eigen values of BBt and reads them into Matrix E  to check 

for positive semi-definiteness of matrix BBt.   
 
[V,D]=eig(BBt);                          Generates eigen vector and eigen value matrices of BBt and reads into 

V and D matrices respectively 
 
B=V × sqrtm(D);                            Decomposes matrix BBt into matrix B by performing matrix operations 

on eigen vectors and eigen values 
 
Z=zeros(14,1);                             Generates a zero matrix Z of order 14 × 1 
 
for i=1:10000                            Executes loop for 10000 iterations to calculate a set of Y values 
 
W=randn(14,1);                           Generates a 14 × 1 matrix of random numbers which follow standard 

normal distribution (Mean = zero and Standard Deviation = 1) 
 
Y=(A × X' ) + (B × W);                               Calculates one set of Y values for each iteration 
 
G(1:14,i)=Y;                             Reads all Y values, generated by each iteration, into matrix G  
 
Z=Z + Y;                                   Stores the cumulative sum of generated 10000 sets of Y-values into an 

array “Z” for further statistical analysis 
 
end      Terminates the iteration process  
 
MatY = ( Z/i );                                Matlab output of a set of Y-values from 10000 iterations 
 
Final=MatY+AvgY';                            Stores the sum of corresponding Mean Y values of input data from 

Excel and Matlab output Y-values into an array “Final” 
 
Final      Displays the array “Final” 


